

MOS INTEGRATED CIRCUIT

μ PD784035, 784036, 784037, 784038

16/8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD784038 is a product of the μ PD784038 sub-series in the 78K/IV series. It contains various peripheral hardware such as ROM, RAM, I/O ports, 8-bit resolution A/D and D/A converters, timers, serial interface, and interrupt functions, as well as a high-speed, high-performance CPU.

In addition, the μ PD78P4038 (one-time PROM or EPROM product), which can be operated within the same power supply voltage ranges as masked-ROM products, and development tools are supported.

For specific functions and other detailed information, consult the following user's manual. This manual is required reading for design work.

 μ PD784038, 784038Y Sub-Series User's Manual, Hardware : U11316E 78K/IV Series User's Manual, Instruction : U10905E

FEATURES

- Pin-compatible with the μPD78234, μPD784026, and μPD784038Y sub-series
- Expanded internal memory spaces in the μ PD78234 and μ PD784026 sub-series
- Minimum instruction execution time: 125 ns (at 32 MHz)
- Number of I/O ports: 64
- Timer/counters: 16-bit timer/counter × 3 units
 16-bit timer × 1 unit
- A/D converter: 8-bit resolution × 8 channels
- D/A converter: 8-bit resolution \times 2 channels

- Serial interface: 3 channels
 UART/IOE (3-wire serial I/O): 2 channels
 CSI (3-wire serial I/O, 2-wire serial I/O): 1 channel
- PWM outputs: 2Standby function
- Clock frequency division function
- Watchdog timer: 1 channel

HALT/STOP/IDLE mode

- Clock output function
 Selectable from fclk, fclk/2, fclk/4, fclk/8, or fclk/16
- Supply voltage: VDD = 2.7 to 5.5 V

APPLICATIONS

LBP, automatic-focusing camera, PPC, printer, electronic typewriter, air conditioner, electronic musical instruments, cellular telephone, etc.

This manual describes the μ PD784038 unless otherwise specified.

The information in this document is subject to change without notice.

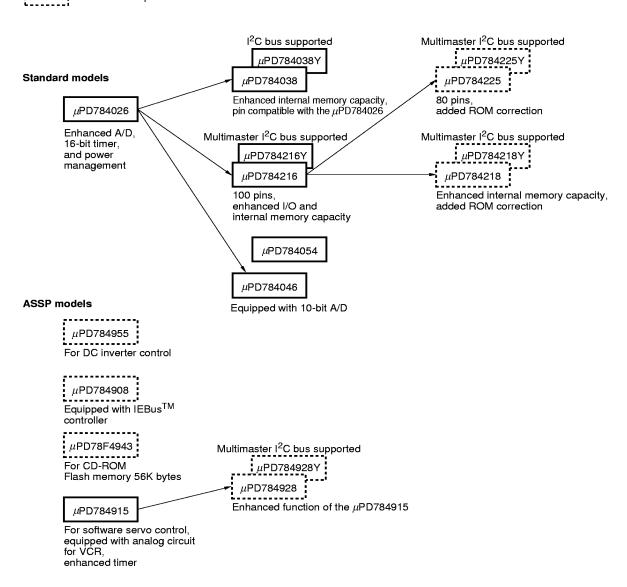
Document No. U10847EJ2V0DS00 (2nd edition) Date Published February 1998 J CP(K)

Printed in Japan

The mark ★ shows major revised points.

© NEC Corporation 1995

ORDERING INFORMATION


Part number		Package	Internal ROM	Internal RAM
			(bytes)	(bytes)
	μPD784035GC-×××-3B9	80-pin plastic QFP (14 \times 14 \times 2.7 mm)	48K	2,048
	μ PD784035GC-×××-8BT	80-pin plastic QFP (14 \times 14 \times 1.4 mm)	48K	2,048
	μ PD784035GK-××-BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm)	48K	2,048
	μ PD784036GC- \times \times -3B9	80-pin plastic QFP (14 \times 14 \times 2.7 mm)	64K	2,048
	μ PD784036GC- \times \times -8BT	80-pin plastic QFP (14 \times 14 \times 1.4 mm)	64K	2,048
	μ PD784036GK-××-BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm)	64K	2,048
*	μ PD784037GC- \times \times -3B9	80-pin plastic QFP (14 \times 14 \times 2.7 mm)	96K	3,584
*	μ PD784037GC- \times \times -8BT	80-pin plastic QFP (14 \times 14 \times 1.4 mm)	96K	3,584
*	μ PD784037GK- $\times\times$ -BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm)	96K	3,584
*	μ PD784038GC- \times \times -3B9	80-pin plastic QFP (14 \times 14 \times 2.7 mm)	128K	4,352
*	μ PD784038GC-×××-8BT	80-pin plastic QFP (14 \times 14 \times 1.4 mm)	128K	4,352
*	μ PD784038GK- \times \times -BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm)	128K	4,352

Remark xxx is ROM code suffix.

★ 78K/IV SERIES PRODUCT DEVELOPMENT DIAGRAM

: Under mass production

FUNCTIONS

		Product	DD704005	BB704000	DD704007	DD704000	
Item		μPD784035	μPD784036	μPD784037	μPD784038		
Number of basic instructions (mnemonics)			113				
Gei	neral-purpos	e register	8 bits × 16 registers	\times 8 banks, or 16 bits \times 8	registers × 8 banks (me	mory mapping)	
Min time		ction execution	125 ns/250 ns/500 n	s/1,000 ns (at 32 MHz)			
Inte	ernal	ROM	48K bytes	64K bytes	96K bytes	128K bytes	
me	mory	RAM	2,048 bytes	•	3,584 bytes	4,352 bytes	
Ме	mory space		Program and data:	1M byte			
I/O	ports	Total	64				
		Input	8				
_		Input/output	56				
	Additional function	Pins with pull- up resistor	54				
	pins Note	LED direct drive outputs	24				
		Transistor direct drive	8				
Rea	al-time outpu	t ports	4 bits \times 2, or 8 bits \Rightarrow	<1			
Timer/counter			(16 bits)				
			Timer/counter 1: Timer register × 1 Pulse output capability (8/16 bits) Capture register × 1 • Real-time output (4 bits × 2) Capture/compare register × 1 Compare register × 1				
			Timer/counter 2: Timer register × 1 Pulse output capability (8/16 bits) Capture register × 1 • Toggle output Capture/compare register × 1 Compare register × 1				
			Timer 3 : Timer register × 1 (8/16 bits) Compare register × 1				
PW	/M outputs		12-bit resolution × 2 channels				
Ser	rial interface		UART/IOE (3-wire serial I/O) : 2 channels (incorporating baud rate generator) CSI (3-wire serial I/O, 2-wire serial I/O): 1 channel				
A/C) converter		8-bit resolution × 8 channels				
D/A	\ converter		8-bit resolution × 2 channels				
Clo	ck output	•	Selected from fclk, fclk/2, fclk/4, fclk/8, or fclk/16 (can be used as a 1-bit output port)				
Wa	tchdog timer		1 channel				
Standby		HALT/STOP/IDLE mode					
Interrupt Hardware source Software source Nonmaskable Maskable		23 (16 internal, 7 external (sampling clock variable input: 1))					
		Software source		KCS instruction, operand	error		
			1 internal, 1 external				
		15 internal, 6 external					
			4-level programmable priority 3 operation statuses: vectored interrupt, macro service, context switching				
Sup	oply voltage		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$				
Package			80-pin plastic QFP (80-pin plastic QFP (80-pin plastic TOFP	14 × 14 × 1.4 mm)			
			80-pin plastic TQFP (fine pitch) (12 × 12 mm)				

Note Additional function pins are included in the I/O pins.

CONTENTS

1.	. DIFFERENCES BETWEEN μ PD784038 SUB-SERIES							
2.	MAIN	N DIFFERENCES BETWEEN μ PD784038, μ PD784038Y, μ PD784026,						
	AND	μPD78234 SUB-SERIES	8					
3.	PIN (CONFIGURATION (TOP VIEW)	9					
4.	SYST	TEM CONFIGURATION EXAMPLE (PPC)	11					
5.	BLO	CK DIAGRAM	12					
6.	PIN F	-UNCTIONS	13					
	6.1	Port Pins	13					
	6.2	Non-Port Pins	15					
	6.3	I/O Circuits for Pins and Handling of Unused Pins	17					
7.	CPU	ARCHITECTURE	20					
	7.1	Memory Space	20					
	7.2	CPU Registers	25					
		7.2.1 General-purpose registers	25					
		7.2.2 Control registers	26					
		7.2.3 Special function registers (SFRs)	27					
8.	PERI	PHERAL HARDWARE FUNCTIONS	32					
	8.1	Ports	32					
	8.2	Clock Generator	33					
	8.3	Real-Time Output Port	35					
	8.4	Timers/Counters	36					
	8.5	PWM Output (PWM0, PWM1)	38					
	8.6	,	39					
	8.7		40					
	8.8		41					
			42					
		,	44					
	8.9	•	45					
	8.10	·	46					
	8.11		46					
9.	INTE	RRUPT FUNCTION	47					
	9.1		47					
	9.2	-	49					
	9.3		50					
	9.4	_	50					
	9.5		51					

10.	LOCA	L BUS INTERFACE	53
	10.1	Memory Expansion	53
	10.2	Memory Space	54
	10.3	Programmable Wait	55
		Pseudo-Static RAM Refresh Function	
	10.5	Bus Hold Function	55
11.	STAN	DBY FUNCTION	56
12.	RESE	T FUNCTION	57
13.	INSTE	RUCTION SET	58
14.	ELEC	TRICAL CHARACTERISTICS	63
15.	PACK	AGE DRAWINGS	84
16.	RECO	MMENDED SOLDERING CONDITIONS	87
API	PENDI	K A DEVELOPMENT TOOLS	89
ΔΡΙ	PENDI	K B RELATED DOCUMENTS	92

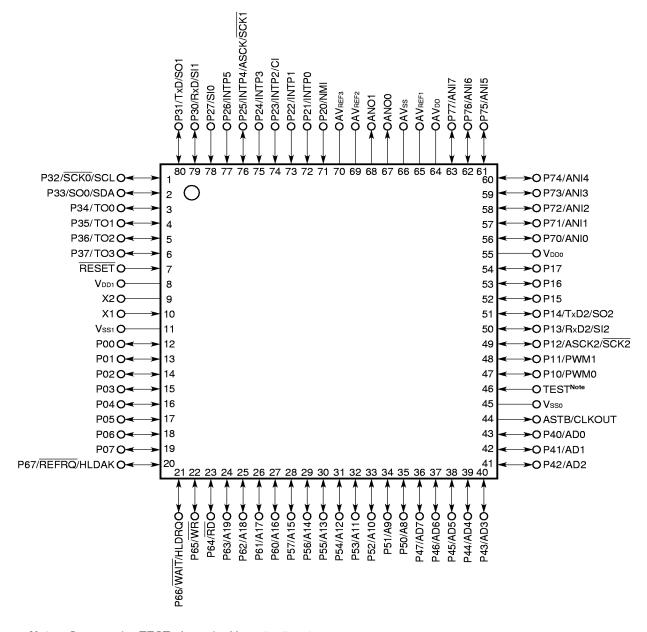
1. DIFFERENCES BETWEEN μ PD784038 SUB-SERIES

The only difference between the μ PD784035, μ PD784036, μ PD784037, and μ PD784038 is their capacity of internal memory.

The μ PD78P4038 is produced by replacing the masked ROM in the μ PD784035, μ PD784036, μ PD784037, or μ PD784038 with 128K-byte one-time PROM or EPROM. Table 1-1 shows the differences between these products.

Table 1-1. Differences between the μ PD784038 Sub-Series

Product Item	μPD784031	μPD784035	μPD784036	μPD784037	μPD784038	μPD78P4038
Internal ROM	Unavailable	48K bytes (masked ROM)	64K bytes (masked ROM)	96K bytes (masked ROM)	128K bytes (masked ROM)	128K bytes (one-time PROM or EPROM)
Internal RAM	2,048 bytes	•		3,584 bytes	4,352 bytes	
Package	80-pin plastic QFP ($14 \times 14 \times 2.7$ mm) 80-pin plastic QFP ($14 \times 14 \times 1.4$ mm) 80-pin plastic TQFP (fine pitch) (12×12 mm)					80-pin ceramic WQFN (14 × 14mm)


2. MAIN DIFFERENCES BETWEEN $\mu\text{PD784038},\,\mu\text{PD784038Y},\,\mu\text{PD784026},\,\text{AND }\mu\text{PD78234 SUBSERIES}$

Series		μ PD784038 sub-series μ PD784038Y sub-series	μPD784026 sub-series	μPD78234 sub-series
Number of basic instructions (mnemonics)		113		65
Minimum time	instruction execution	125 ns (at 32 MHz)	160 ns (at 25 MHz)	333 ns (at 12 MHz)
Memory s	pace (program/data)	1M byte in total		64K bytes/1M byte
Timer/cou	nter	16-bit timer/counter \times 1 8/16-bit timer/counter \times 2 8/16-bit timer \times 1		16-bit timer/counter × 1 8-bit timer/counter × 2 8-bit timer × 1
Clock out	put function	Available		Unavailable
Watchdog	ı timer	Available		Unavailable
Serial interface		UART/IOE (3-wire serial I/O) × 2 channels CSI (3-wire serial I/O, 2-wire serial I/O, I ² C bus ^{Note}) × 1 channel	UART/IOE (3-wire serial I/O) × 2 channels CSI (3-wire serial I/O, SBI) × 1 channel	UART × 1 channel CSI (3-wire serial I/O, SBI) × 1 channel
Interrupt	Context switching	Available	Unavailable	
	Priority	4 levels	2 levels	
Standby f	unction	3 modes (HALT, STOP, IDLE)	2 modes (HALT, STOP)	
Operation	clock switching	Selectable from fxx/2, fxx/4, fx	Fixed to fxx/2	
Pin functions	MODE pin	Unavailable		To specify ROM-less mode (always in the high level for the μ PD78233 or μ PD78237)
	TEST pin	Pin for testing the device Low level during ordinary use		Unavailable
Package		80-pin plastic QFP (14 \times 14 \times 2.7 mm) 80-pin plastic QFP (14 \times 14 \times 1.4 mm) 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) 80-pin ceramic WQFN (14 \times 14 mm): for the μ PD78P4038 and μ PD78P4038Y only	80-pin plastic QFP $(14 \times 14 \times 2.7 \text{ mm})$ 80-pin plastic TQFP (fine pitch) $(12 \times 12 \text{ mm})$: for the μ PD784021 only 80-pin ceramic WQFN $(14 \times 14 \text{ mm})$: for the μ PD78P4026 only	80-pin plastic QFP (14 \times 14 \times 2.7 mm) 94-pin plastic QFP (20 \times 20 mm) 84-pin plastic QFJ (1,150 \times 1,150 mil) 94-pin ceramic WQFN (20 \times 20 mm): for the μ PD78P238 only

Note For the μ PD784038Y sub-series only.

3. PIN CONFIGURATION (TOP VIEW)

- 80-pin plastic QFP (14 × 14 × 2.7 mm) μ PD784035GC-×××-3B9, μ PD784037GC-×××-3B9, μ PD784038GC-×××-3B9
- 80-pin plastic QFP (14 × 14 × 1.4 mm) μ PD784035GC-×××-8BT, μ PD784037GC-×××-8BT, μ PD784038GC-×××-8BT
- 80-pin plastic TQFP (fine pitch) (12 × 12 mm) μ PD784035GK-×××-BE9, μ PD784037GK-×××-BE9, μ PD784038GK-×××-BE9

Note $\,$ Connect the TEST pin to the $\,$ Vsso pin directly.

A8-A19 : Address bus
AD0-AD7 : Address/data bus
ANI0-ANI7 : Analog input

ANO0, ANO1 : Analog output

ASCK, ASCK2: Asynchronous serial clock

ASTB : Address strobe

AVDD : Analog power supply

AVREF1-AVREF3 : Reference voltage

AVSS : Analog ground

CI : Clock input

CLKOUT : Clock output

HLDAK : Hold acknowledge

HLDRQ : Hold request

INTP0-INTP5 : Interrupt from peripherals
NMI : Non-maskable interrupt

P00-P07 : Port 0 P10-P17 : Port 1 P20-P27 : Port 2 P30-P37 : Port 3 P40-P47 : Port 4 P50-P57 : Port 5 P60-P67 : Port 6 P70-P77 : Port 7

PWM0, PWM1: Pulse width modulation output

RD : Read strobe
REFRQ : Refresh request

RESET : Reset

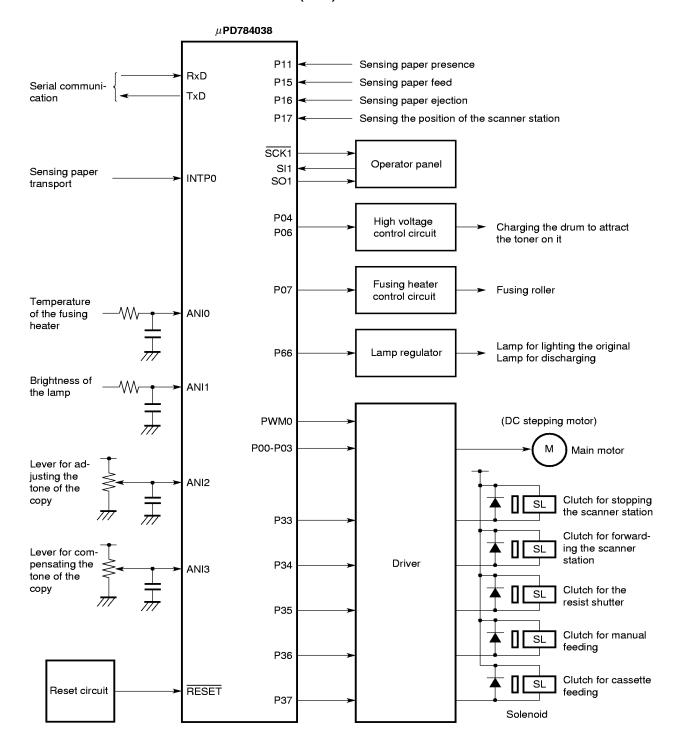
RxD, RxD2 : Receive data

SCK0-SCK2 : Serial clock

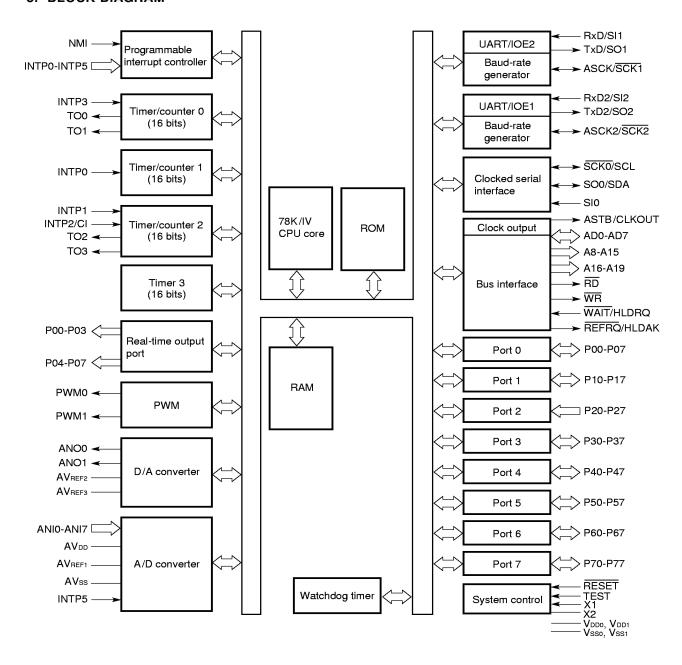
SCL : Serial clock

SDA : Serial data

SI0-SI2 : Serial input


SO0-SO2 : Serial output

TEST : Test


TO0-TO3 : Timer output
TxD, TxD2 : Transmit data
VDD0, VDD1 : Power supply
Vss0, Vss1 : Ground
WAIT : Wait

WR : Write strobe X1, X2 : Crystal

4. SYSTEM CONFIGURATION EXAMPLE (PPC)

5. BLOCK DIAGRAM

Remark The internal ROM or RAM capacity differs for each product.

6. PIN FUNCTIONS

6.1 Port Pins (1/2)

Port 0 (P0): Solid I/O port.	Pin	I/O	Dual-function	Function	
Functions as a real-time output port (4 bits × 2). Inputs and outputs can be specified bit by bit. The use of the pull-up resistors can be specified by software for the pins in the input mode together. Can drive a transistor. Powmo	P00-P07	1/0	-	Port 0 (P0):	
PWM0				8-bit I/O port.	
Pilo				• Functions as a real-time output port (4 bits × 2).	
in the input mode together. Can drive a transistor. Potr 1 (Pt): PWM0 Potr 1 (Pt): ASCK2/SCK2 RxD2/SI2 TxD2/SO2 TxD2/SO2 Tinput P14 P27 P28 P15-P17 P29 Input INTP0 P29 INTP0 P29 INTP1 P29 INTP1 P29 INTP2/CI P29 INTP2 INTP2 INTP2 INTP3 INTP4/ASCK/SCK1 INTP5 INTP5 SI0 P27 P30 P30 P30 P31 P34-P37 P40-P47 P40 P40 P40 P50 P50-P57 P50				Inputs and outputs can be specified bit by bit.	
Property Property					
P11				Can drive a transistor.	
P12 RXD2/SI2 RXD2/SI2 TXD2/SO2 TXD2/SO3 TXD/SO3 TXD/SO3 TXD2/SO3 TXD2/	P10	I/O	PWM0	Port 1 (P1):	
P13	P11		PWM1	8-bit I/O port.	
P14	P12		ASCK2/SCK2	Inputs and outputs can be specified bit by bit.	
Post	P13		RxD2/SI2	The use of the pull-up resistors can be specified by software for the pins	
Port 2 (P2): Port 2 (P2): Port 2 (P2): INTP0	P14		TxD2/SO2	in the input mode together.	
P21 P22 P23 P24 P25 INTP0 P20 does not function as a general-purpose port (nonmaskable interrupt). However, the input level can be checked by an interrupt service routine. P26 INTP3 INTP4/ASCK/SCK1 P26 P27 P30 P30 P30 P31 P31 P32 P33 P34-P37 P33 P34-P37 P40-P47 P40-P47 P50-P57	P15-P17		-	Can drive LED.	
P22 P23 P24 P25 P26 P27 P27 P28 P29 P28 P29	P20	Input	NMI	Port 2 (P2):	
P24 P25 INTP2/CI INTP3 INTP4/ASCK/SCK1 The use of the pull-up resistors can be specified by software for pins P22 to P27 (in units of 6 bits). The P25/INTP4/ASCK/SCK1 pin functions as the SCK1 output pin by CSIM1. Port 3 (P3): P30	P21		INTP0	8-bit input-only port.	
P24 INTP3 routine. P25 INTP4/ASCK/SCK1 The use of the pull-up resistors can be specified by software for pins P22 to P27 (in units of 6 bits). P26 INTP5 SI0 CSIM1. P30 I/O RxD/SI1 Port 3 (P3): P31 TxD/SO1 8-bit I/O port. P32 SOO/SDA Fine use of the pull-up resistors can be specified by software for the pins in the input mode together. P34-P37 I/O AD0-AD7 Port 4 (P4): • 8-bit I/O port. • 1nputs and outputs can be specified bit by bit. • The use of the pull-up resistors can be specified by software for the pins in the input mode together. P50-P57 I/O A8-A15 Port 5 (P5): • 8-bit I/O port. • Inputs and outputs can be specified bit by bit. • The use of the pull-up resistors can be specified by software for the pins in the input mode together. P50-P57 I/O A8-A15 Port 5 (P5): • 8-bit I/O port. • Inputs and outputs can be specified bit by bit. • The use of the pull-up resistors can be specified by software for the pins in the input mode together. • The use of the pull-up resistors can be specified by software for the pins in the input mode together.	P22		INTP1	P20 does not function as a general-purpose port (nonmaskable inter-	
P24 P25 INTP3 INTP4/ASCK/SCK1 INTP5 P22 to P27 (in units of 6 bits). P26 P27 SI0 CSIM1. P30 P30 P31 TXD/SO1 8-bit I/O port. P33 P34-P37 I/O AD0-AD7 Port 4 (P4): P40-P47 P50-P57 I/O A8-A15 Port 5 (P5): P50-P57 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50	P23		INTP2/CI		
P25	P24		INTP3		
P26 R27 SI0 CSIM1. P30 P31 TxD/SO1 8-bit I/O port. P32 SO0/SDA TO0-TO3 P40-P47 P40-P47 P50-P57 P50-P57 P50-P57 P50-P57 P50-P57 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P50 P	P25		INTP4/ASCK/SCK1		
P27 SI0 CSIM1. P30 P31 TxD/SO1 + 8-bit I/O port. P32 SO0/SDA T00-TO3 Port 4 (P4): P40-P47 P40-P47 P50-P57 P50-P5	P26		INTP5		
P31 P32 P33 P34-P37 P40-P47 P50-P57 P50-P57 P30 P32 P30 P34-P37 P35 P30/SDA P34-P37 P50-P57 P50-P57 P50-P57 P35 P36 P37 P38 P38 P39 P39 P39 P30/SDA P30/SDA P30/SDA P30/SDA P30/SDA P30/SDA P40-P47 Port 4 (P4): P50-P57 P50-P	P27		SIO		
P32 P33 P34-P37 P40-P47 P40-P47 P50-P57 P50-P57 P36 P37 P38 P38 P39 P38 P39 P39 P50/SCL Port 4 (P4): Port 5 (P5): Port 5 (P5	P30	1/0	RxD/SI1	Port 3 (P3):	
P33 P34-P37 P40-P47 P40-P47 P50-P57 P50-P57 P33 P34-P37 P40-P47 P40-P47 P40-P47 P40-P47 P50-P57 P50-P5	P31		TxD/SO1	8-bit I/O port.	
P34-P37 P40-P47 I/O AD0-AD7 Port 4 (P4): • 8-bit I/O port. • Inputs and outputs can be specified bit by bit. • The use of the pull-up resistors can be specified by software for the pins in the input mode together. • Can drive LED. P50-P57 I/O A8-A15 Port 5 (P5): • 8-bit I/O port. • Inputs and outputs can be specified bit by bit. • The use of the pull-up resistors can be specified by software for the pins in the input mode together.	P32		SCK0/SCL	Inputs and outputs can be specified bit by bit.	
P40-P47 I/O AD0-AD7 Port 4 (P4):	P33		SO0/SDA	The use of the pull-up resistors can be specified by software for the pins	
8-bit I/O port. Inputs and outputs can be specified bit by bit. The use of the pull-up resistors can be specified by software for the pins in the input mode together. Can drive LED. P50-P57 I/O A8-A15 Port 5 (P5): 8-bit I/O port. Inputs and outputs can be specified bit by bit. The use of the pull-up resistors can be specified by software for the pins in the input mode together.	P34-P37		TO0-TO3	in the input mode together.	
Inputs and outputs can be specified bit by bit. The use of the pull-up resistors can be specified by software for the pins in the input mode together. Can drive LED. Port 5 (P5): 8-bit I/O port. Inputs and outputs can be specified bit by bit. The use of the pull-up resistors can be specified by software for the pins in the input mode together.	P40-P47	1/0	AD0-AD7	Port 4 (P4):	
The use of the pull-up resistors can be specified by software for the pins in the input mode together. Can drive LED. Port 5 (P5): 8-bit I/O port. Inputs and outputs can be specified bit by bit. The use of the pull-up resistors can be specified by software for the pins in the input mode together.				• 8-bit I/O port.	
in the input mode together. Can drive LED. Port 5 (P5): 8-bit I/O port. Inputs and outputs can be specified bit by bit. The use of the pull-up resistors can be specified by software for the pins in the input mode together.				Inputs and outputs can be specified bit by bit.	
P50-P57 I/O A8-A15 Port 5 (P5): • 8-bit I/O port. • Inputs and outputs can be specified bit by bit. • The use of the pull-up resistors can be specified by software for the pins in the input mode together.				1	
 8-bit I/O port. Inputs and outputs can be specified bit by bit. The use of the pull-up resistors can be specified by software for the pins in the input mode together. 				Can drive LED.	
 Inputs and outputs can be specified bit by bit. The use of the pull-up resistors can be specified by software for the pins in the input mode together. 	P50-P57	1/0	A8-A15	Port 5 (P5):	
The use of the pull-up resistors can be specified by software for the pins in the input mode together.				• 8-bit I/O port.	
The use of the pull-up resistors can be specified by software for the pins in the input mode together.				Inputs and outputs can be specified bit by bit.	
Can drive LED.				The use of the pull-up resistors can be specified by software for the pins	
				Can drive LED.	

6.1 Port Pins (2/2)

Pin	I/O	Dual-function	Function
P60-P63	I/O	A16-A19	Port 6 (P6):
P64		RD	8-bit I/O port.
P65		WR	Inputs and outputs can be specified bit by bit.
P66		WAIT/HLDRQ	The use of the pull-up resistors can be specified by software for the pins
P67		REFRQ/HLDAK	in the input mode together.
P70-P77	I/O	ANIO-ANI7	Port 7 (P7):
			8-bit I/O port.
			Inputs and outputs can be specified bit by bit.

6.2 Non-Port Pins (1/2)

Pin	I/O	Dual-function	Function		
TO0-TO3	Output	P34-P37	Timer output		
CI	Input	P23/INTP2	Input of a count clock	k for timer/counter 2	
RxD	Input	P30/SI1	Serial data input (UA	RT0)	
RxD2		P13/SI2	Serial data input (UA	RT2)	
TxD	Output	P31/SO1	Serial data output (U	ART0)	
TxD2		P14/SO2	Serial data output (U.	ART2)	
ASCK	Input	P25/INTP4/SCK1	Baud rate clock input	t (UART0)	
ASCK2		P12/SCK2	Baud rate clock input	t (UART2)	
SDA	1/0	P33/SO0	Serial data I/O (2-wire serial I/O)		
SI0	Input	P27	Serial data input (3-w	vire serial I/O0)	
SI1		P30/RxD	Serial data input (3-w	vire serial I/O1)	
SI2		P13/RxD2	Serial data input (3-w	vire serial I/O2)	
SO0	Output	P33/SDA	Serial data output (3-	-wire serial I/O0)	
SO1		P31/TxD	Serial data output (3-	-wire serial I/O1)	
SO2	•	P14/TxD2	Serial data output (3-	-wire serial I/O2)	
SCK0	1/0	P32/SCL	Serial clock I/O (3-wi	re serial I/O0)	
SCK1		P25/INTP4/ASCK	Serial clock I/O (3-wi	re serial I/O1)	
SCK2		P12/ASCK2	Serial clock I/O (3-wire serial I/O2)		
SCL		P32/SCK0	Serial clock I/O (2-wire serial I/O)		
NMI	Input	P20	External interrupt request	-	
INTP0		P21		Input of a count clock for timer/counter 1 Capture/trigger signal for CR11 or CR12	
INTP1		P22		Input of a count clock for timer/counter 2 Capture/trigger signal for CR22	
INTP2		P23/CI		Input of a count clock for timer/counter 2 Capture/trigger signal for CR21	
INTP3		P24		Input of a count clock for timer/counter 0 Capture/trigger signal for CR02	
INTP4		P25/ASCK/SCK1		-	
INTP5		P26	1	Input of a conversion start trigger for A/D converter	
AD0-AD7	I/O	P40-P47	Time multiplexing ad	dress/data bus (for connecting external memory)	
A8-A15	Output	P50-P57	High-order address b	ous (for connecting external memory)	
A16-A19	Output	P60-P63	High-order address bus of	during address expansion (for connecting external memory)	
RD	Output	P64	Strobe signal output	for reading the contents of external memory	
WR	Output	P65	Strobe signal output	for writing on external memory	
WAIT	Input	P66/HLDRQ	Wait signal insertion		
REFRQ	Output	P67/HLDAK	Refresh pulse output	to external pseudo static memory	
HLDRQ	Input	P66/WAIT	Input of bus hold req	uest	
HLDAK	Output	P67/REFRQ	Output of bus hold response		
ASTB	Output	CLKOUT	Latch timing output o connecting external r	of time multiplexing address (A0-A7) (for memory)	
CLKOUT	Output	ASTB	Clock output		

6.2 Non-Port Pins (2/2)

Pin	I/O	Dual-function	Function
RESET	Input	-	Chip reset
X1	Input	-	Crystal input for system clock oscillation (A clock pulse can also be
X2	-		input to the X1 pin.)
ANIO-ANI7	Input	P70-P77	Analog voltage inputs for the A/D converter
ANO0, ANO1	Output	-	Analog voltage inputs for the D/A converter
AV _{REF1}	-	-	Application of A/D converter reference voltage
AVREF2, AVREF3			Application of D/A converter reference voltage
AVDD			Positive power supply for the A/D converter
AVss			Ground for the A/D converter
V _{DD0} Note 1			Positive power supply of the port part
V _{DD1} Note 1			Positive power supply except for the port part
V _{SS0} Note 2			Ground of the port part
V _{SS1} Note 2			Ground except for the port part
TEST			Directly connect to the Vss pin. (The TEST pin is for the IC test.)

Notes 1. The potential of the V_{DD0} pin must be equal to that of the V_{DD1} pin.

^{2.} The potential of the $V_{\rm SS0}$ pin must be equal to that of the $V_{\rm SS1}$ pin.

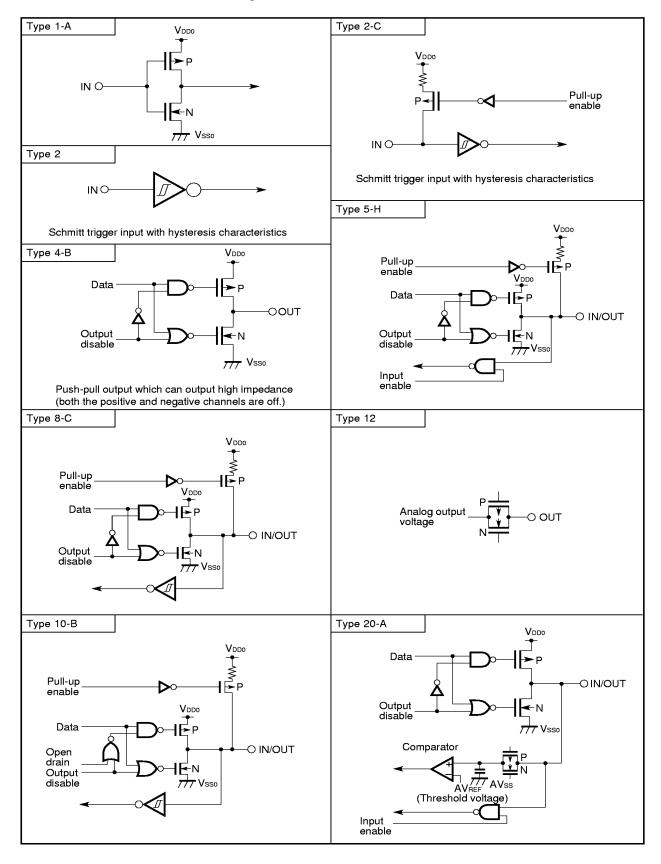
6.3 I/O Circuits for Pins and Handling of Unused Pins

Table 6-1 describes the types of I/O circuits for pins and the handling of unused pins.

Figure 6-1 shows the configuration of these various types of I/O circuits.

Table 6-1. Types of I/O Circuits for Pins and Handling of Unused Pins (1/2)

Pin	I/O circuit type	1/0	Recommended connection method for unused pins
P00-P07	5-H	1/0	Input state : Connect these pins to the VDDD pin.
P10/PWM0			Output state: Leave open.
P11/PWM1			
P12/ASCK2/SCK2	8-C		
P13/RxD2/SI2	5-H		
P14/TxD2/SO2			
P15-P17			
P20/NMI	2	Input	Connect these pins to the VDD0 or Vsso pin.
P21/INTP0			
P22/INTP1	2-C		Connect these pins to the VDD0 pin.
P23/INTP2/CI			
P24/INTP3			
P25/INTP4/ASCK/SCK1	8-C	1/0	Input state : Connect this pin to the VDD0 pin.
			Output state: Leave open.
P26/INTP5	2-C	Input	Connect these pins to the VDD0 pin.
P27/SI0			
P30/RxD/SI1	5-H	1/0	Input state : Connect these pins to the VDDD pin.
P31/TxD/SO1			Output state: Leave open.
P32/SCK0/SCL	10-B		
P33/SO0/SDA			
P34/TO0-P37/TO3	5-H		
P40/AD0-P47/AD7			
P50/A8-P57/A15			
P60/A16-P63/A19			
P64/RD			
P65/WR			
P66/WAIT/HLDRQ			
P67/REFRQ/HLDAK			
P70/ANI0-P77/ANI7	20-A	I/O	Input state : Connect this pin to the VDDO or VSSO pin.
			Output state: Leave open.
ANO0, ANO1	12	Output	Leave open.
ASTB/CLKOUT	4-B		


Table 6-1. Types of I/O Circuits for Pins and Handling of Unused Pins (2/2)

Pin	I/O circuit type	I/O	Recommended connection method for unused pins
RESET	2	Input	-
TEST	1-A		Connect this pin to the Vsso pin directly.
AVREF1-AVREF3	-		Connect these pins to the Vsso pin.
AVss			
AVDD			Connect this pin to the VDDD pin.

Caution When the I/O mode of an I/O dual-function pin is unpredictable, connect the pin to V_{DDO} through a resistor of 10 to 100 kilohms (particularly when the voltage of the reset input pin becomes higher than that of the low-level input at power-on or when I/O is switched by software).

Remark Since type numbers are consistent in the 78K series, those numbers are not always serial in each product. (Some circuits are not included.)

Figure 6-1. I/O Circuits for Pins

7. CPU ARCHITECTURE

7.1 Memory Space

A 1M-byte memory space can be accessed. By using a LOCATION instruction, the mode for mapping internal data areas (special function registers and internal RAM) can be selected. A LOCATION instruction must always be executed after a reset, and can be used only once.

(1) When the LOCATION 0 instruction is executed

Internal memory

The table below indicates the internal data areas and internal ROM areas of each product.

Product name	Internal data area	Internal ROM area
μPD784035	0F700H-0FFFFH	00000H-0BFFFH
μPD784036		00000H-0F6FFH
μPD784037	0F100H-0FFFFH	00000H-0F0FFH 10000H-17FFFH
μPD784038	0EE00H-0FFFFH	00000H-0FDFFH 10000H-1FFFFH

Caution The following internal ROM areas, existing at the same addresses as the internal data areas, cannot be used when the LOCATION 0 instruction is executed:

Product name	Unusable area
μPD784035	-
μPD784036	0F700H-0FFFFH (2,304 bytes)
μPD784037	0F100H-0FFFFH (3,840 bytes)
μPD784038	0EE00H-0FFFFH (4,608 bytes)

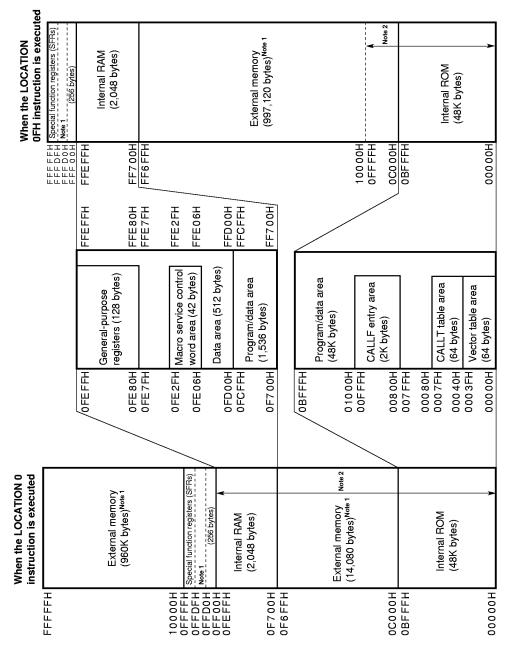
External memory

External memory is accessed in external memory expansion mode.

(2) When the LOCATION 0FH instruction is executed

Internal memory

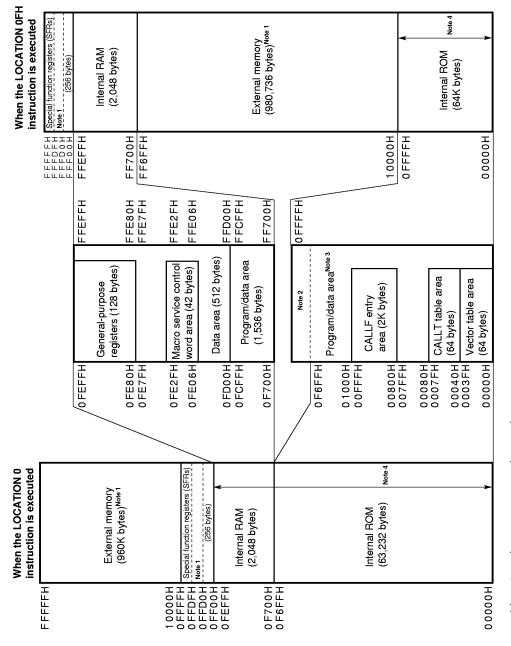
The table below lists the internal data areas and internal ROM areas for each product.


Product name	Internal data area	Internal ROM area
μPD784035	FF700H-FFFFFH	00000H-0BFFFH
μPD784036		00000H-0FFFFH
μPD784037	0F100H-FFFFFH	00000H-17FFFH
μPD784038	FEE00H-FFFFFH	00000H-1FFFFH

External memory

External memory is accessed in external memory expansion mode.

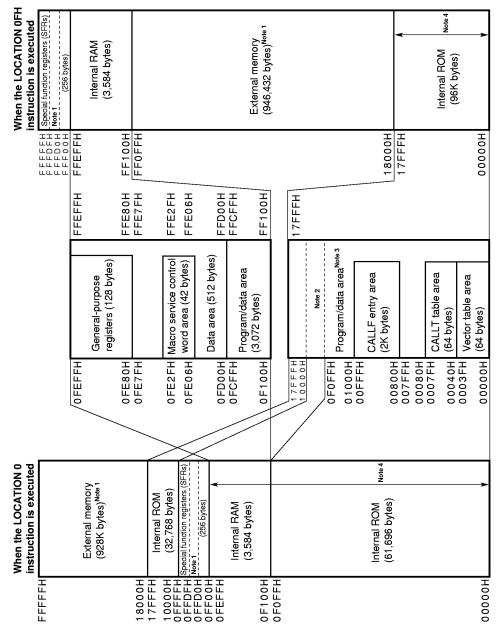
20


Figure 7-1. μ PD784035 Memory Map

Notes 1. Accessed in external memory expansion mode.

Base area, or entry area based on a reset or interrupt. Internal RAM is excluded in the case of a reset.

Figure 7-2. µPD784036 Memory Map

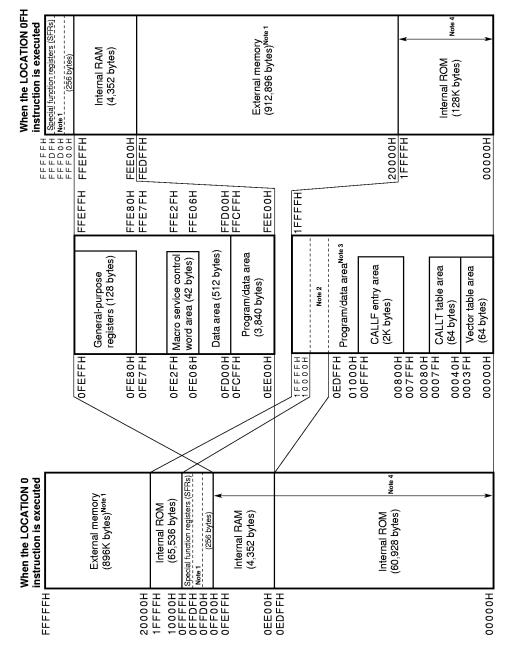

Notes 1. Accessed in external memory expansion mode.

- 2. This 2,304-byte area can be used as an internal ROM area only when the LOCATION 0FH instruction is executed.
 - 3. When the LOCATION 0 instruction is executed : 63,232 bytes
- When the LOCATION 0FH instruction is executed: 65,536 bytes

4.

Base area, or entry area based on a reset or interrupt. Internal RAM is excluded in the case of a reset.

Figure 7-3. μ PD784037 Memory Map


Notes 1. Accessed in external memory expansion mode.

- 2. This 3,840-byte area can be used as an internal ROM area only when the LOCATION 0FH instruction is executed.
- 3. When the LOCATION 0 instruction is executed : 94,464 bytes

When the LOCATION 0FH instruction is executed: 98,304 bytes

Base area, or entry area based on a reset or interrupt. Internal RAM is excluded in the case of a reset. 4

Figure 7-4. µPD784038 Memory Map

Notes 1. Accessed in external memory expansion mode.

- 2. This 4,608-byte area can be used as an internal ROM area only when the LOCATION 0FH instruction is executed.
- 3. When the LOCATION 0 instruction is executed : 126,464 bytes

When the LOCATION 0FH instruction is executed: 131,072 bytes

Base area, or entry area based on a reset or interrupt. Internal RAM is excluded in the case of a reset. 4.

7.2 CPU Registers

7.2.1 General-purpose registers

A set of general-purpose registers consists of sixteen general-purpose 8-bit registers. Two 8-bit general-purpose registers can be combined to form a 16-bit general-purpose register. Moreover, four 16-bit general-purpose registers, when combined with an 8-bit register for address extension, can be used as 24-bit address specification registers.

Eight banks of this register set are provided. The user can switch between banks by software or the context switching function.

General-purpose registers other than the V, U, T, and W registers used for address extension are mapped onto internal RAM.

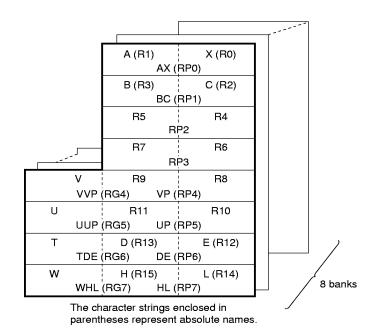
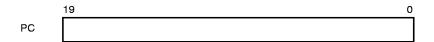


Figure 7-5. General-Purpose Register Format

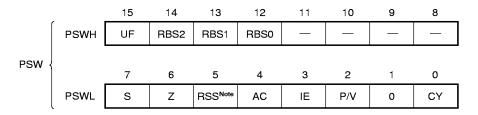
Caution By setting the RSS bit of PSW to 1, R4, R5, R6, R7, RP2, and RP3 can be used as the X, A, C, B, AX, and BC registers, respectively. However, this function must be used only when using programs for the 78K/III series.



7.2.2 Control registers

(1) Program counter (PC)

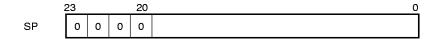
This register is a 20-bit program counter. The program counter is automatically updated by program execution.


Figure 7-6. Format of Program Counter (PC)

(2) Program Status Word (PSW)

This register holds the CPU state. The program status word is automatically updated by program execution.

Figure 7-7. Format of Program Status Word (PSW)



Note This flag is used to maintain compatibility with the 78K/III series. This flag must be set to 0 when programs for the 78K/III series are being used.

(3) Stack pointer (SP)

This register is a 24-bit pointer for holding the start address of the stack. The high-order 4 bits must be set to 0.

Figure 7-8. Format of Stack Pointer (SP)

7.2.3 Special function registers (SFRs)

The special function registers are registers with special functions such as mode registers and control registers for built-in peripheral hardware. The special function registers are mapped onto the 256-byte space between 0FF00H and 0FFFFHNote.

Note Applicable when the LOCATION 0 instruction is executed. FFF00H-FFFFFH when the LOCATION 0FH instruction is executed.

Caution Never attempt to access addresses in this area where no SFR is allocated. Otherwise, the μ PD784038 may be placed in the deadlock state. The deadlock state can be cleared only by a reset.

Table 7-1 lists the special function registers (SFRs). The titles of the table columns are explained below.

•	Abbreviation	. Symbol used to represent a built-in SFR. The abbreviations listed in the table are
		reserved words for the NEC assembler (RA78K4). The C compiler (CC78K4) allows
		the abbreviations to be used as sfr variables with the #pragma sfr command.
•	R/W	. Indicates whether each SFR allows read and/or write operations.
		R/W: Allows both read and write operations.
		R : Allows read operations only.
		W : Allows write operations only.
•	Manipulatable bits	. Indicates the maximum number of bits that can be manipulated whenever an SFR is
		manipulated. An SFR that supports 16-bit manipulation can be described in the sfrp
		operand. For address specification, an even-numbered address must be speci-
		fied.
		An SFR that supports 1-bit manipulation can be described in a bit manipulation
		instruction.

When reset Indicates the state of each register when RESET is applied.

Table 7-1. Special Function Registers (SFRs) (1/4)

A -l -l Noto	Special function register (SFR) name		Abbreviation		DAA	Manipulatable bits			\\/\b======
AddressNote	Special function reg	gister (SFR) name	Abbre	viation	R/W	1 bit	8 bits	16 bits	When reset
0FF00H	Port 0				R/W	0	0	-	Undefined
0FF01H	Port 1					0	0	-	
0FF02H	Port 2		P2		R	0	0	-	
0FF03H	Port 3		Р3		R/W	0	0	-	
0FF04H	Port 4		P4			0	0		
0FF05H	Port 5		P5			0	0	-	
0FF06H	Port 6		P6			0	0	-	00H
0FF07H	Port 7		P7			0	0		Undefined
0FF0EH		Port 0 buffer register L	POL			0	0	-	
0FF0FH	Port 0 buffer register H		РОН			0	0	-	
0FF10H	Compare register (timer/	counter 0)	CR00			-	-	0	
0FF12H	Capture/compare registe	er (timer/counter 0)	CR01			-	-	0	
0FF14H	Compare register L (time	er/counter 1)	CR10	CR10W		-	0	0	
0FF15H	Compare register H (time	er/counter 1)	-			-	-		
0FF16H	Capture/compare registe	er L (timer/counter 1)	CR11	CR11W		-	0	0	
0FF17H	Capture/compare registe	er H (timer/counter 1)	-			-	-		
0FF18H	Compare register L (time	er/counter 2)	CR20	CR20W		-	0	0	
0FF19H	Compare register H (time	er/counter 2)	-			-	-		
0FF1AH	Capture/compare registe	er L (timer/counter 2)	CR21	CR21W		-	0	0	
0FF1BH	Capture/compare registe	er H (timer/counter 2)	-			-	-		
0FF1CH	Compare register L (time	er 3)	CR30	CR30W		-	0	0	
0FF1DH	Compare register H (time	er 3)	-			-			
0FF20H	Port 0 mode register		РМО			0	0	-	FFH
0FF21H	Port 1 mode register		PM1			0	0	-	
0FF23H	Port 3 mode register		РМЗ			0	0	-	
0FF24H	Port 4 mode register		PM4			0	0	-	
0FF25H	Port 5 mode register		PM5			0	0	-	
0FF26H	Port 6 mode register		РМ6			0	0	-	
0FF27H	Port 7 mode register		РМ7			0	0	-	
0FF2EH	Real-time output port co	Real-time output port control register				0	0	-	00H
0FF30H	Capture/compare contro	l register 0	CRC0			-	0	-	10H
0FF31H	Timer output control regi	ister	тос			0	0	-	00H
0FF32H	Capture/compare contro	l register 1	CRC1			-	0	-	
0FF33H	Capture/compare contro	l register 2	CRC2			-	0	-	10H

Note Applicable when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to each address.

Table 7-1. Special Function Registers (SFRs) (2/4)

AddressNote	Cassial function register (SED) name	Abbreviation		R/W	Mani	pulatabl	e bits	When reset
Addressitote	Special function register (SFR) name	Abbre	viation	I I I / VV	1 bit	8 bits	16 bits	when reset
0FF36H	Capture register (timer/counter 0)	CR02		R	ı	1	0	0000H
0FF38H	Capture register L (timer/counter 1)	CR12	CR12 CR12W		ı	0	0	
0FF39H	Capture register H (timer/counter 1)	-			ı	ı		
0FF3AH	Capture register L (timer/counter 2)	CR22	CR22W		ı	0	0	
0FF3BH	Capture register H (timer/counter 2)	-			ı	ı		
0FF41H	Port 1 mode control register	PMC1		R/W	0	0	-	00H
0FF43H	Port 3 mode control register	РМСЗ			0	0	-	
0FF4EH	Register for optional pull-up resistor	PUO			0	0	-	
0FF50H	Timer register 0	тмо		R	•	•	0	0000H
0FF51H					-	-		
0FF52H	Timer register 1	TM1	TM1W		-	0	0	
0FF53H		-			-	-		
0FF54H	Timer register 2	TM2	TM2W		-	0	0	
0FF55H		-			-	-		
0FF56H	Timer register 3	ТМЗ	тмзw		-	0	0	
0FF57H		-			-	-		
0FF5CH	Prescaler mode register 0	PRMO		R/W	-	0	-	11H
0FF5DH	Timer control register 0	тмсо			0	0	-	00H
0FF5EH	Prescaler mode register 1	PRM1			•	0	-	11H
0FF5FH	Timer control register 1	TMC1			0	0	-	00H
0FF60H	D/A conversion value setting register 0	DACS)		-	0	-	
0FF61H	D/A conversion value setting register 1	DACS	1		-	0	-	
0FF62H	D/A converter mode register	DAM			0	0	-	03H
0FF68H	A/D converter mode register	ADM			0	0	-	00H
0FF6AH	A/D conversion result register	ADCR		R	1	0	-	Undefined
0FF70H	PWM control register	PWMC	;	R/W	0	0	-	05H
0FF71H	PWM prescaler register	PWPR			-	0	-	00H
0FF72H	PWM modulo register 0	PWM0			ı	-	0	Undefined
0FF74H	PWM modulo register 1	PWM1					0	
0FF7DH	One-shot pulse output control register	OSPC			0	0	-	00H
0FF80H	I ² C bus control register	IICC			0	0	-	
0FF81H	Prescaler mode register for serial clock	SPRM			-	0	-	04H
0FF82H	Synchronous serial interface mode register	CSIM			0	0	-	00H

Note Applicable when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to each address.

Table 7-1. Special Function Registers (SFRs) (3/4)

AddressNote 1	Special function register (SFR) name		viation	R/W	Manipulatable bits			When reset
Addressione	Special function register (SFR) frame	Abbre	viation	I-1/ V V	1 bit	8 bits	16 bits	when reset
0FF84H	Synchronous serial interface mode register 1	CSIM1	CSIM1		0	0	-	00H
0FF85H	Synchronous serial interface mode register 2	CSIM2	CSIM2		0	0	-	
0FF86H	Serial shift register	SIO			-	0	-	
0FF88H	Asynchronous serial interface mode register	ASIM			0	0	-	
0FF89H	Asynchronous serial interface mode register 2	ASIM2			0	0	-	
0FF8AH	Asynchronous serial interface status register	ASIS		R	0	0	-	
0FF8BH	Asynchronous serial interface status register 2	ASIS2			0	0	-	
0FF8CH	Serial receive buffer: UART0	RXB			-	0	-	Undefined
	Serial transmission shift register: UART0	TXS		w	-	0	-	
	Serial shift register: IOE1	SIO1		R/W	-	0	-	
0FF8DH	Serial receive buffer: UART2	RXB2		R	-	0	-	
	Serial transmission shift register: UART2	TXS2		w	-	0	-	
	Serial shift register: IOE2	SIO2		R/W	-	0	-	
0FF90H	Baud rate generator control register	BRGC			-	0	-	00H
0FF91H	Baud rate generator control register 2	BRGC	2		-	0	-	
0FFA0H	External interrupt mode register 0	INTMO			0	0	-	
0FFA1H	External interrupt mode register 1	INTM1			0	0	-	
0FFA4H	Sampling clock selection register	SCS0			-	0	-	
0FFA8H	In-service priority register	ISPR		R	0	0	-	
OFFAAH	Interrupt mode control register	IMC		R/W	0	0	-	80H
0FFACH	Interrupt mask register 0L	MKOL	мко		0	0	0	FFFFH
OFFADH	Interrupt mask register 0H	мкон			0	0		
OFFAEH	Interrupt mask register 1L	MK1L			0	0	-	FFH
0FFC0H	Standby control register	STBC			-	⊖Note 2	-	30H
0FFC2H	Watchdog timer mode register	WDM			-	ONote 2	-	00H
0FFC4H	Memory expansion mode register	ММ			0	0	-	20H
0FFC5H	Hold mode register	HLDM			0	0	-	00H
0FFC6H	Clock output mode register	CLOM			0	0	-	
0FFC7H	Programmable wait control register 1	PWC1			-	0	-	AAH
0FFC8H	Programmable wait control register 2	PWC2			-	-	0	AAAAH

- **Notes 1.** Applicable when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to each address.
 - 2. A write operation can be performed only with special instructions MOV STBC,#byte and MOV WDM,#byte. Other instructions cannot perform a write operation.

Table 7-1. Special Function Registers (SFRs) (4/4)

AddressNote	Special function register (SFR) name	Abbreviation	B/W	Manipulatable bits			When reset
Addressnote	Special function register (SFR) hame	Abbreviation	In/VV	1 bit	8 bits	16 bits	vvnen reset
0FFCCH	Refresh mode register	RFM	R/W	0	0	-	00H
0FFCDH	Refresh area specification register	RFA		0	0	-	
0FFCFH	Oscillation settling time specification register	OSTS		-	0	-	
0FFD0H-	External SFR area	-		0	0	-	•
OFFDFH							
0FFE0H	Interrupt control register (INTP0)	PIC0		0	0	-	43H
0FFE1H	Interrupt control register (INTP1)	PIC1		0	0	-	
0FFE2H	Interrupt control register (INTP2)	PIC2		0	0	-	
0FFE3H	Interrupt control register (INTP3)	PIC3		0	0	-	
0FFE4H	Interrupt control register (INTC00)	CIC00		0	0	-	
0FFE5H	Interrupt control register (INTC01)	CIC01		0	0	-	
0FFE6H	Interrupt control register (INTC10)	CIC10		0	0	-	
0FFE7H	Interrupt control register (INTC11)	CIC11		0	0	-	
0FFE8H	Interrupt control register (INTC20)	CIC20		0	0	-	
0FFE9H	Interrupt control register (INTC21)	CIC21		0	0	-	
0FFEAH	Interrupt control register (INTC30)	CIC30		0	0	-	
OFFEBH	Interrupt control register (INTP4)	PIC4		0	0	-	
0FFECH	Interrupt control register (INTP5)	PIC5		0	0	-	
0FFEDH	Interrupt control register (INTAD)	ADIC		0	0	-	
OFFEEH	Interrupt control register (INTSER)	SERIC		0	0	-	
0FFEFH	Interrupt control register (INTSR)	SRIC		0	0	-	
	Interrupt control register (INTCSI1)	CSIIC1		0	0	-	
0FFF0H	Interrupt control register (INTST)	STIC		0	0	-	
0FFF1H	Interrupt control register (INTCSI)	CSIIC		0	0	-	
0FFF2H	Interrupt control register (INTSER2)	SERIC2		0	0	-	
0FFF3H	Interrupt control register (INTSR2)	SRIC2		0	0	-	
	Interrupt control register (INTCSI2)	CSIIC2		0	0	-	
0FFF4H	Interrupt control register (INTST2)	STIC2		0	0	-	

Note Applicable when the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, F0000H is added to each address.

8. PERIPHERAL HARDWARE FUNCTIONS

8.1 Ports

The ports shown in Figure 8-1 are provided to enable the application of wide-ranging control. Table 8-1 lists the functions of the ports. For the inputs to port 0 to port 6, a built-in pull-up resistor can be specified by software.

Figure 8-1. Port Configuration

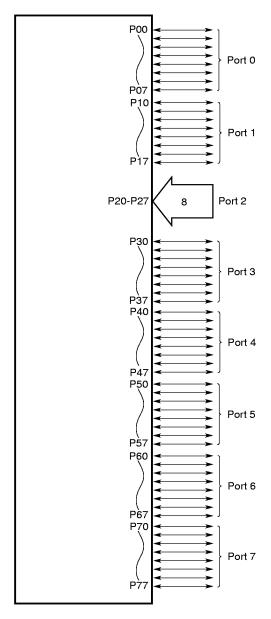


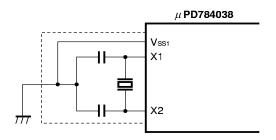
Table 8-1. Port Functions

Port name	Pin	Function	Pull-up specification by software
Port 0	P00-P07	Bit-by-bit input/output setting supported Operable as 4-bit real-time outputs (P00-P03, P04-P07) Capable of driving transistors	Specified as a batch for all pins placed in input mode.
Port 1	P10-P17	Bit-by-bit input/output setting supported Capable of driving LEDs	Specified as a batch for all pins placed in input mode.
Port 2	P20-P27	Input port	Specified for the 6 bits (P22-P27) as a batch.
Port 3	P30-P37	Bit-by-bit input/output setting supported	Specified as a batch for all pins placed in input mode.
Port 4	P40-P47	Bit-by-bit input/output setting supported Capable of driving LEDs	Specified as a batch for all pins placed in input mode.
Port 5	P50-P57	Bit-by-bit input/output setting supported Capable of driving LEDs	Specified as a batch for all pins placed in input mode.
Port 6	P60-P67	Bit-by-bit input/output setting supported	Specified as a batch for all pins placed in input mode.
Port 7	P70-P77	Bit-by-bit input/output setting supported	-

8.2 Clock Generator

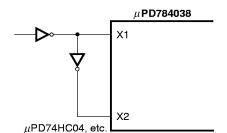
A circuit for generating the clock signal required for operation is provided. The clock generator includes a frequency divider; low current consumption can be achieved by operating at a lower internal frequency when high-speed operation is not necessary.

Figure 8-2. Block Diagram of Clock Generator

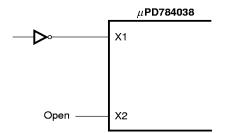


Remark fxx: Oscillator frequency or external clock input frequency

fclk: Internal operating frequency


Figure 8-3. Examples of Using Oscillator

(1) Crystal/ceramic oscillation



(2) External clock

• When EXTC bit of OSTS = 1

• When EXTC bit of OSTS = 0

Caution When using the system clock generator, run wires in the portion surrounded by broken lines according to the following rules to avoid effects such as stray capacitance:

- Minimize the wiring.
- · Never cause the wires to cross other signal lines.
- Never cause the wires to run near a line carrying a large varying current.
- Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss1. Never connect the capacitor to a ground pattern carrying a large current.
- · Never extract a signal from the oscillator.

8.3 Real-Time Output Port

The real-time output port outputs data stored in the buffer, synchronized with a timer/counter 1 match interrupt or external interrupt. Thus, pulse output that is free of jitter can be obtained.

Therefore, the real-time output port is best suited to applications (such as open-loop control over stepping motors) where an arbitrary pattern is output at arbitrary intervals.

As shown in Figure 8-4, the real-time output port is built around port 0 and the port 0 buffer register (P0H, P0L).

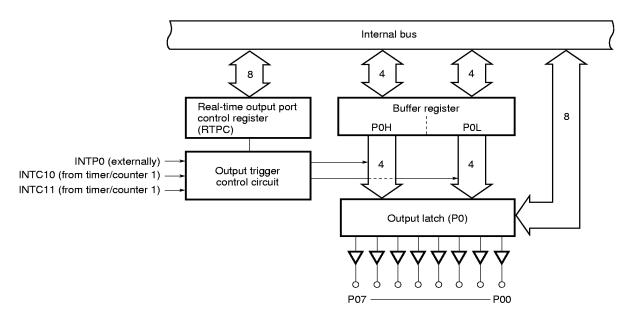
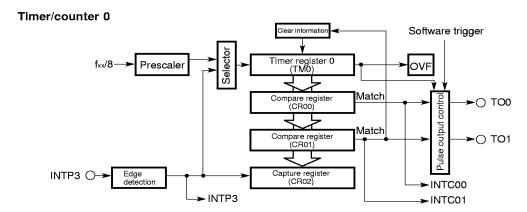


Figure 8-4. Block Diagram of Real-Time Output Port

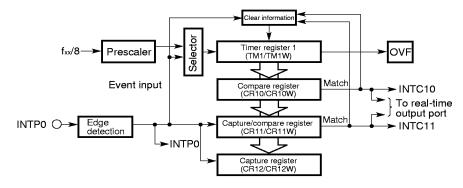
8.4 Timers/Counters

Three timer/counter units and one timer unit are incorporated.

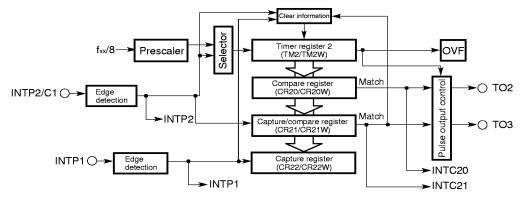
Moreover, seven interrupt requests are supported, allowing these units to function as seven timer/counter units.

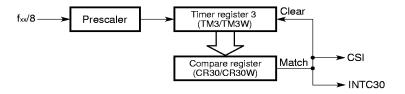

Table 8-2. Timer/Counter Operation

Name			Timer/counter 0	Timer/counter 1	Timer/counter 2	Timer 3
Count pulse width	8 bits		-	0	0	0
	16 bits		0	0	0	0
Operating mode	Interval timer		2ch	2ch	2ch	1ch
	External event counter		0	0	0	-
	One-shot timer		-	-	0	-
Function	Timer output		2ch	-	2ch	-
	Toggle output		0	-	0	-
		PWM/PPG output	0	-	0	-
	One-shot pulse outputNote Real-time output Pulse width measurement		0	-	-	-
			-	0	-	-
			1 input	1 input	2 inputs	-
	Nu	mber of interrupt requests	2	2	2	1


Note The one-shot pulse output function makes the level of a pulse output active by software, and makes the level of a pulse output inactive by hardware (interrupt request signal).

Note that this function differs from the one-shot timer function of timer/counter 2.


Figure 8-5. Timer/Counter Block Diagram


Timer/counter 1

Timer/counter 2

Timer 3

Remark OVF: Overflow flag

8.5 PWM Output (PWM0, PWM1)

Two channels of PWM (pulse width modulation) output circuitry with a resolution of 12 bits and a repetition frequency of 62.5 kHz (fclk = 16 MHz) are incorporated. Low or high active level can be selected for the PWM output channels, independently of each other. This output is best suited to DC motor speed control.

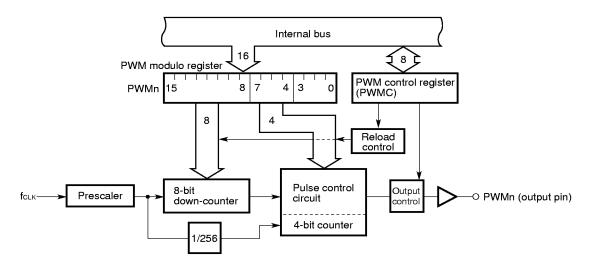


Figure 8-6. Block Diagram of PWM Output Unit

Remark n = 0, 1

8.6 A/D Converter

An analog/digital (A/D) converter having 8 multiplexed analog inputs (ANI0-ANI7) is incorporated.

The successive approximation system is used for conversion. The result of conversion is held in the 8-bit A/D conversion result register (ADCR). Thus, speedy high-precision conversion can be achieved. (The conversion time is about 7.5 μ s at fcLK = 16 MHz.)

A/D conversion can be started in any of the following modes:

- Hardware start: Conversion is started by means of trigger input (INTP5).
- · Software start: Conversion is started by means of bit setting the A/D converter mode register (ADM).

After conversion has started, one of the following modes can be selected:

- · Scan mode: Multiple analog inputs are selected sequentially to obtain conversion data from all pins.
- Select mode: A single analog input is selected at all times to enable conversion data to be obtained continuously.

ADM is used to specify the above modes, as well as the termination of conversion.

When the result of conversion is transferred to ADCR, an interrupt request (INTAD) is generated. Using this feature, the results of conversion can be continuously transferred to memory by the macro service.

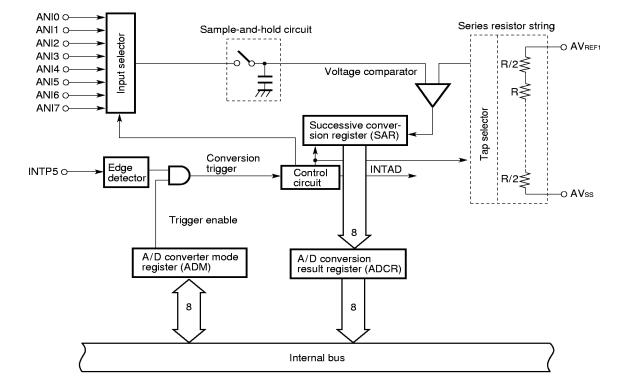


Figure 8-7. Block Diagram of A/D Converter

8.7 D/A Converter

Two digital/analog (D/A) converter channels of voltage output type, having a resolution of 8 bits, are incorporated. An R-2R resistor ladder system is used for conversion. By writing the value to be subject to D/A conversion in the 8-bit D/A conversion value setting register (DACSn: n = 0, 1), the resulting analog value is output on ANOn (n = 0, 1). The range of the output voltages is determined by the voltages applied to the AVREF2 and AVREF3 pins.

Because of its high output impedance, no current can be obtained from an output pin. When the load impedance is low, insert a buffer amplifier between the load and the converter.

The impedance of the ANOn pin goes high while the RESET signal is low. DACSn is set to 0 after a reset is released.

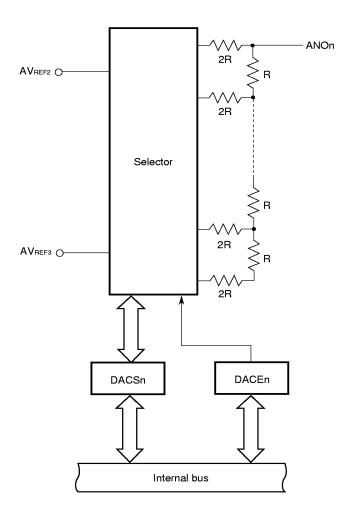
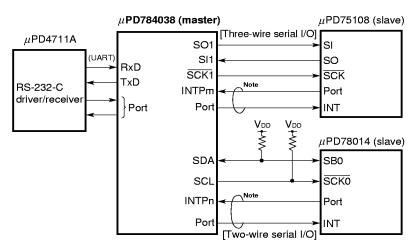


Figure 8-8. Block Diagram of D/A Converter

Remark n = 0, 1

8.8 Serial Interface


Three independent serial interface channels are incorporated.

- Asynchronous serial interface (UART)/three-wire serial I/O (IOE) \times 2
- Synchronous serial interface (CSI) × 1
 - Three-wire serial I/O (IOE)
 - Two-wire serial I/O (IOE)

So, communication with points external to the system and local communication within the system can be performed at the same time. (See **Figure 8-9**.)

Figure 8-9. Example Serial Interfaces

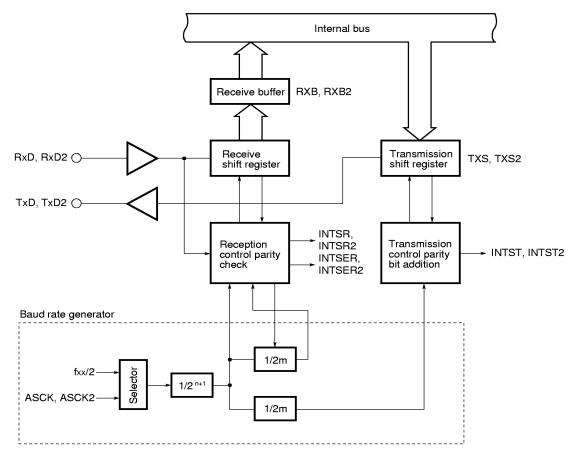
UART + Three-wire serial I/O + Two-wire serial I/O

Note Handshake line

8.8.1 Asynchronous serial interface/three-wire serial I/O (UART/IOE)

Two serial interface channels are available; for each channel, asynchronous serial interface mode or three-wire serial I/O mode can be selected.

(1) Asynchronous serial interface mode


In this mode, 1-byte data is transferred after a start bit.

A baud rate generator is incorporated to enable communication at a wide range of baud rates.

Moreover, the frequency of a clock signal applied to the ASCK pin can be divided to define a baud rate.

With the baud rate generator, the baud rate conforming to the MIDI standard (31.25 kbps) can be obtained.

Figure 8-10. Block Diagram of Asynchronous Serial Interface Mode

Remark fxx: Oscillator frequency or external clock input frequency

n = 0 to 11

m = 16 to 30

(2) Three-wire serial I/O mode

In this mode, the master device makes the serial clock active to start transmission, then transfers 1-byte data in phase with the clock.

This mode is designed for communication with a device incorporating a conventional synchronous serial interface. Basically, three lines are used for communication: the serial clock line (SCK) and the two serial data lines (SI and SO).

In general, a handshake line is required to check the communication state.

Internal bus Direction control circuit SIO1, SIO2 Shift register Output latch SO1, SO2 (Interrupt signal INTCSI1, SCK1, SCK2 (Serial clock counter INTCSI2 generator Selector Serial clock control circuit

Figure 8-11. Block Diagram of Three-Wire Serial I/O Mode

Remark fxx: Oscillator frequency or external clock input frequency

n = 0 to 11

m = 1, 16 to 30

8.8.2 Synchronous serial interface (CSI)

With this interface, the master device makes the serial clock active to start transmission, then transfers 1-byte data in phase with the clock.

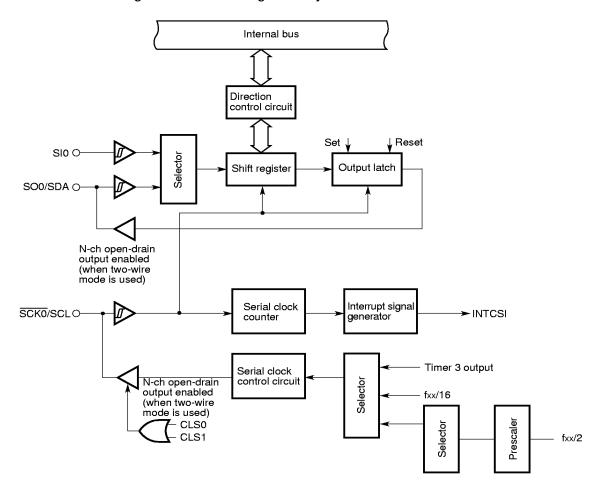


Figure 8-12. Block Diagram of Synchronous Serial Interface

Remark fxx: Oscillator frequency or external clock input frequency

(1) Three-wire serial I/O mode

This mode is designed for communication with a device incorporating a conventional synchronous serial interface. Basically, three lines are used for communication: the serial clock line $(\overline{SCK0})$ and serial data lines (SI0 and SO0). In general, a handshake line is required to check the communication state.

(2) Two-wire serial I/O mode

In this mode, 8-bit data is transferred using two lines: the serial clock line (SCL) and serial data bus (SDA). In general, a handshake line is required to check the communication state.

8.9 Clock Output Function

The frequency of the CPU clock signal can be divided for output to a point external to the system. Moreover, the port can be used as a 1-bit port.

The ASTB pin is also used for the CLKOUT pin, so that when this function is used, the local bus interface cannot be used.

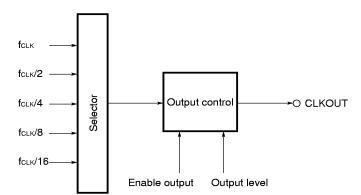


Figure 8-13. Block Diagram of Clock Output Function

8.10 Edge Detection Function

The interrupt input pins (NMI, INTP0-INTP5) are used to apply not only interrupt requests but also trigger signals for the built-in circuits. As these pins are triggered by an edge (rising or falling) of an input signal, a function for edge detection is incorporated. Moreover, a noise suppression function is provided to prevent erroneous edge detection caused by noise.

Pin	Detectable edge	Noise suppression method
NMI	Rising edge or falling edge	Analog delay
INTP0-INTP3	Rising edge or falling edge, or both edges	Clock samplingNote
INTP4, INTP5		Analog delay

Note INTP0 is used for sampling clock selection.

8.11 Watchdog Timer

A watchdog timer is incorporated for CPU runaway detection. The watchdog timer, if not cleared by software within a specified interval, generates a nonmaskable interrupt. Furthermore, once watchdog timer operation is enabled, it cannot be disabled by software. The user can specify whether priority is placed on an interrupt based on the watchdog timer or on an interrupt based on the NMI pin.

FCLK/ 2^{21} $f_{\text{CLK}}/2^{20}$ $f_{\text{CLK}}/2^{19}$ $f_{\text{CLK}}/2^{17}$ Clear signal

Figure 8-14. Block Diagram of Watchdog Timer

9. INTERRUPT FUNCTION

Table 9-1 lists the interrupt request handling modes. These modes are selected by software.

Table 9-1. Interrupt Request Handling Modes

Handling mode	Handled by	Handling	PC and PSW contents
Vectored interrupt	Software	Branches to a handling routine for execution (arbitrary handling).	The PC and PSW contents are pushed to and popped from the stack.
Context switching		Automatically selects a register bank, and branches to a handling routine for execution (arbitrary handling).	The PC and PSW contents are saved to and read from a fixed area in the register bank.
Macro service	Firmware	Performs operations such as memory-to-I/O-device data transfer (fixed handling).	Maintained

9.1 Interrupt Source

An interrupt can be issued from any one of the interrupt sources listed in Table 9-2: execution of a BRK instruction and BRKCS instruction, an operand error, or any of the 23 other interrupt sources.

Four levels of interrupt handling priority can be set. Priority levels can be set to nest control during interrupt handling or to concurrently generate interrupt requests. Nested macro services, however, are performed without suspension.

When interrupt requests having the same priority level are generated, they are handled according to the default priority (fixed). (See **Table 9-2**.)

Table 9-2. Interrupt Sources

Type	Default		Source	Internal/	Macro
Туре	priority	Name	Trigger	external	service
Software	-	BRK instruction	Instruction execution	-	-
		BRKCS instruction			
		Operand error	When the MOV STBC,#byte, MOV WDM,#byte, or LOCATION instruction is executed, exclusive OR of the byte operand and byte does not produce FFH.		
Nonmaskable	-	NMI	Detection of edge input on the pin	External	-
		WDT	Watchdog timer overflow	Internal	
Maskable	0 (highest)	INTP0	Detection of edge input on the pin (TM1/TM1W capture trigger, TM1/TM1W event counter input)	External	Enabled
	1	INTP1	Detection of edge input on the pin (TM2/TM2W capture trigger, TM2/TM2W event counter input)		
	2	INTP2	Detection of edge input on the pin (TM2/TM2W capture trigger, TM2/TM2W event counter input)		
	3	INTP3	Detection of edge input on the pin (TM0 capture trigger, TM0 event counter input)		
	4	INTC00	TM0-CR00 match signal issued	Internal	Enabled
	5	INTC01	TM0-CR01 match signal issued		
	6	INTC10	TM1-CR10 match signal issued (in 8-bit operation mode) TM1W-CR10W match signal issued (in 16-bit operation mode)		
	7	INTC11	TM1-CR11 match signal issued (in 8-bit operation mode) TM1W-CR11W match signal issued (in 16-bit operation mode)		
	8	INTC20	TM2-CR20 match signal issued (in 8-bit operation mode) TM2W-CR20W match signal issued (in 16-bit operation mode)		
	9	INTC21	TM2-CR21 match signal issued (in 8-bit operation mode) TM2W-CR21W match signal issued (in 16-bit operation mode)		
	10	INTC30	TM3-CR30 match signal issued (in 8-bit operation mode) TM3W-CR30W match signal issued (in 16-bit operation mode)		
	11	INTP4	Detection of edge input on the pin	External	Enabled
	12	INTP5	Detection of edge input on the pin		
	13	INTAD	A/D converter processing completed (ADCR transfer)	Internal	Enabled
	14	INTSER	ASI0 reception error		-
	15	INTSR	ASI0 reception completed or CSI1 transfer completed		Enabled
		INTCSI1			
	16	INTST	ASI0 transmission completed		
	17	INTCSI	CSI0 transfer completed		
	18	INTSER2	ASI2 reception error		-
	19	INTSR2	ASI2 reception completed or CSI2 transfer completed		Enabled
		INTCSI2			
	20 (lowest)	INTST2	ASI2 transmission completed		

Remark ASI: Asynchronous serial interface

CSI: Synchronous serial interface

9.2 Vectored Interrupt

When a branch to an interrupt handling routine occurs, the vector table address corresponding to the interrupt source is used as the branch address.

Interrupt handling by the CPU consists of the following operations:

- When a branch occurs : Push the CPU status (PC and PSW contents) to the stack.
- When control is returned: Pop the CPU status (PC and PSW contents) from the stack.

To return control from the handling routine to the main routine, use the RETI instruction. The branch destination addresses must be within the range of 0 to FFFFH.

Table 9-3. Vector Table Address

Interrupt source	Vector table address
BRK instruction	003EH
Operand error	003CH
NMI	0002H
WDT	0004H
INTP0	0006H
INTP1	0008H
INTP2	000AH
INTP3	000CH
INTC00	000EH
INTC01	0010H
INTC10	0012H
INTC11	0014H
INTC20	0016H
INTC21	0018H
INTC30	001AH
INTP4	001CH
INTP5	001EH
INTAD	0020H
INTSER	0022H
INTSR	0024H
INTCSI1	
INTST	0026H
INTCSI	0028H
INTSER2	002AH
INTSR2	002CH
INTCSI2	
INTST2	002EH

9.3 Context Switching

When an interrupt request is generated, or when the BRKCS instruction is executed, an appropriate register bank is selected by the hardware. Then, a branch to a vector address stored in that register bank occurs. At the same time, the contents of the current program counter (PC) and program status word (PSW) are stacked in the register bank.

The branch address must be within the range of 0 to FFFFH.

0000B 7 Transfer Register bank (0-7) Register bank n (n = 0-7) PC19-16 PC15-0 Х В С ⑥ Exchange R5 R4 ② Save (Bits 8 to 11 of R7 R6 temporary register) (5) Save ٧ (3) Switching between register banks U UP Temporary register $(RBS0-RBS2 \leftarrow n)$ Т D Ε $\mathsf{RSS} \leftarrow \mathsf{O}$ W Н L 1 Save **PSW**

Figure 9-1. Context Switching Caused by an Interrupt Request

9.4 Macro Service

The macro service function enables data transfer between memory and special function registers (SFRs) without requiring the intervention of the CPU. The macro service controller accesses both memory and SFRs within the same transfer cycle to directly transfer data without having to perform data fetch.

Since the CPU status is neither saved nor restored, nor is data fetch performed, high-speed data transfer is possible.

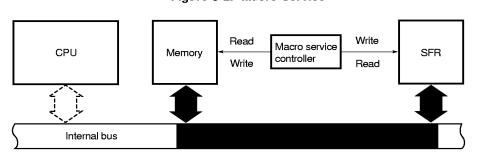
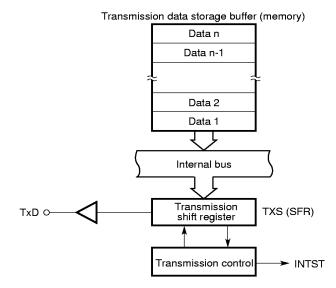
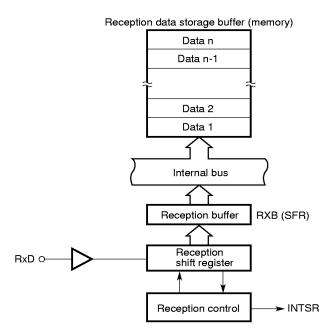
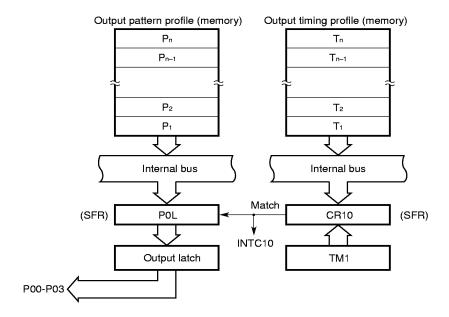



Figure 9-2. Macro Service


9.5 Examples of Macro Service Applications

(1) Serial interface transmission

Each time macro service request (INTST) is generated, the next transmission data is transferred from memory to TXS. When data n (last byte) has been transferred to TXS (that is, once the transmission data storage buffer becomes empty), vectored interrupt request (INTST) is generated.


(2) Serial interface reception

Each time macro service request (INTSR) is generated, reception data is transferred from RXB to memory. When data n (last byte) has been transferred to memory (that is, once the reception data storage buffer becomes full), vectored interrupt request (INTSR) is generated.

(3) Real-time output port

INTC10 and INTC11 function as the output triggers for the real-time output ports. For these triggers, the macro service can simultaneously set the next output pattern and interval. Therefore, INTC10 and INTC11 can be used to independently control two stepping motors. They can also be applied to PWM and DC motor control.

Each time macro service request (INTC10) is generated, a pattern and timing data are transferred to the buffer register (P0L) and compare register (CR10), respectively. When the contents of timer register 1 (TM1) and CR10 match, another INTC10 is generated, and the P0L contents are transferred to the output latch. When T_{I} (last byte) is transferred to CR10, vectored interrupt request (INTC10) is generated.

For INTC11, the same operation as that performed for INTC10 is performed.

10. LOCAL BUS INTERFACE

The local bus interface enables the connection of external memory and I/O devices (memory-mapped I/O). It supports a 1M-byte memory space. (See **Figure 10-1**.)

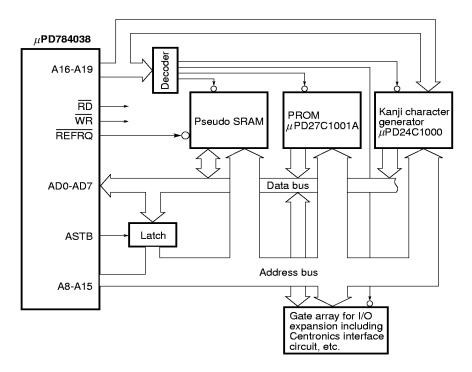
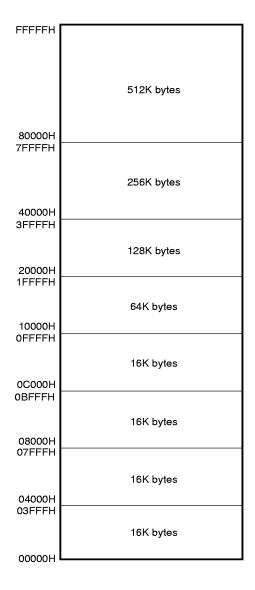


Figure 10-1. Example of Local Bus Interface


10.1 Memory Expansion

By adding external memory, program memory or data memory can be expanded, 256 bytes at a time, to approximately 1M byte (seven steps).

10.2 Memory Space

The 1M-byte memory space is divided into eight spaces, each having a logical address. Each of these spaces can be controlled using the programmable wait and pseudo-static RAM refresh functions.

Figure 10-2. Memory Space

10.3 Programmable Wait

When the memory space is divided into eight spaces, a wait state can be separately inserted for each memory space while the $\overline{\text{RD}}$ or $\overline{\text{WR}}$ signal is active. This prevents the overall system efficiency from being degraded even when memory devices having different access times are connected.

In addition, an address wait function that extends the ASTB signal active period is provided to produce a longer address decode time. (This function is set for the entire space.)

10.4 Pseudo-Static RAM Refresh Function

Refresh is performed as follows:

• Pulse refresh : A bus cycle is inserted where a refresh pulse is output on the REFRQ pin at regular

intervals. When the memory space is divided into eight, and a specified area is being accessed, refresh pulses can also be output on the $\overline{\text{REFRQ}}$ pin as the memory is being accessed. This can prevent the refresh cycle from suspending

normal memory access.

• Power-down self-refresh: In standby mode, a low-level signal is output on the REFRQ pin to maintain the

contents of pseudo-static RAM.

10.5 Bus Hold Function

A bus hold function is provided to facilitate connection to devices such as a DMA controller. Suppose that a bus hold request signal (HLDRQ) is received from an external bus master. In this case, upon the completion of the bus cycle being performed, the address bus, address/data bus, ASTB, $\overline{\text{RD}}$, and $\overline{\text{WR}}$ pins are placed in the high-impedance state, and the bus hold acknowledge signal (HLDAK) is made active to release the bus for the external bus master.

While the bus hold function is being used, the external wait and pseudo-static RAM refresh functions are disabled.

11. STANDBY FUNCTION

The standby function allows the power consumption of the chip to be reduced. The following standby modes are supported:

- HALT mode: The CPU operation clock is stopped. By occasionally inserting the HALT mode during normal operation, the overall average power consumption can be reduced.
- IDLE mode: The entire system is stopped, with the exception of the oscillator circuit. This mode consumes
 only very little more power than STOP mode, but normal program operation can be restored in
 almost as little time as that required to restore normal program operation from HALT mode.
- STOP mode: The oscillator is stopped. All operations in the chip stop, such that only leakage current flows.

These modes can be selected by software.

A macro service can be initiated in HALT mode.

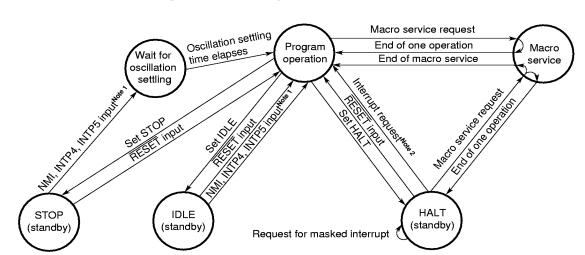


Figure 11-1. Standby Mode Status Transition

- Notes 1. INTP4 and INTP5 are applied when not masked.
 - 2. Only when the interrupt request is not masked

Remark NMI is enabled only by external input. The watchdog timer cannot be used to release one of the standby modes (STOP or IDLE mode).

12. RESET FUNCTION

Applying a low-level signal to the RESET pin initializes the internal hardware (reset status).

When the RESET input makes a low-to-high transition, the following data is loaded into the program counter (PC):

• Eight low-order bits of the PC : Contents of location at address 0000H

• Intermediate eight bits of the PC: Contents of location at address 0001H

• Four high-order bits of the PC : 0

The PC contents are used as a branch destination address. Program execution starts from that address. Therefore, a reset start can be performed from an arbitrary address.

The contents of each register can be set by software, as required.

The RESET input circuit contains a noise eliminator to prevent malfunctions caused by noise. This noise eliminator is an analog delay sampling circuit.

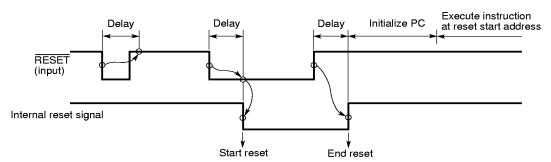


Figure 12-1. Accepting a Reset

For power-on reset, the RESET signal must be held active until the oscillation settling time (approximately 40 ms) has elapsed.

Oscillation settling time

Delay Initialize PC

RESET (input)

Internal reset signal

Execute instruction at reset start address

Execute instruction at reset start address

Execute instruction at reset start address

Figure 12-2. Power-On Reset

13. INSTRUCTION SET

(1) 8-bit instructions (The instructions enclosed in parentheses are implemented by a combination of operands, where A is described as r.)

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKNE, CMPBKNE, CMPBKNE, CMPBKNE, CHKL, CHKLA

Table 13-1. Instructions Implemented by 8-Bit Addressing

2nd operand 1st operand	#byte	А	r r'	saddr saddr'	sfr	!addr16 !!addr24	mem [saddrp] [%saddrg]	r3 PSWL PSWH	[WHL+]	n	None Note 2
А	(MOV) ADDNote 1	(MOV) (XCH) (ADD)Note 1	MOV XCH (ADD)Note 1	(MOV)Note 6 (XCH)Note 6 (ADD)Notes 1, 6	MOV (XCH) (ADD)Note 1	(MOV) (XCH) ADDNote 1	MOV XCH ADDNote 1	MOV	(MOV) (XCH) (ADD)Note 1		
r	MOV ADDNote 1	(MOV) (XCH) (ADD)Note 1	MOV XCH ADDNote 1	MOV XCH ADDNote 1	MOV XCH ADDNote 1	MOV XCH				RORNote 3	MULU DIVUW INC DEC
saddr	MOV ADD No te 1	(MOV)Note 6 (ADD)Note 1	MOV ADDNote 1	MOV XCH ADDNote 1							INC DEC DBNZ
sfr	MOV ADDNote 1	MOV (ADD)Note 1	MOV ADDNote 1								PUSH POP CHKL CHKLA
!addr16 !!addr24	MOV	(MOV) ADDNote 1	MOV								
mem [saddrp] [%saddrg]		MOV ADDNote 1									
mem3											ROR4 ROL4
r3 PSWL PSWH	MOV	MOV									
B, C											DBNZ
STBC, WDM	моу										
[TDE+] [TDE–]		(MOV) (ADD)Note 1 MOVMNote 4							MOVBKNote 5		

Notes 1. ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as ADD.

- 2. There is no second operand, or the second operand is not an operand address.
- 3. ROL, RORC, ROLC, SHR, and SHL are the same as ROR.
- 4. XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as MOVM.
- 5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as MOVBK.
- 6. When saddr is saddr2 with this combination, an instruction with a short code exists.

(2) 16-bit instructions (The instructions enclosed in parentheses are implemented by a combination of operands, where AX is described as rp.)

MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 13-2. Instructions Implemented by 16-Bit Addressing

2nd operand 1st operand	#w ord	AX	rp rp'	saddrp saddrp'	sfrp	!addr16 !!addr24	mem [saddrp] [%saddrg]	[WHL+]	byte	n	NoneNote 2
AX	(MOVW) ADDWNote 1	(MOVW) (XCHW) (ADD)Note 1	(MOVW) (XCHW) (ADDW)Note 1	(MOVW)Note 3 (XCHW)Note 3 (ADDW)Notes 1,3	MOVW (XCHW) (ADDW)Note 1	(MOVW) XCHW	MOVW XCHW	(MOVW) (XCHW)			
rp	MOVW ADDWNote 1	(MOVW) (XCHW) (ADDW)Note 1	MOVW XCHW ADDWNote 1	MOVW XCHW ADDWNote 1	MOVW XCHW ADDWNote 1	MOVW				SHRW SHLW	MULWNote 4 INCW DECW
saddrp	MOVW ADDWNote 1	(MOVW)Note 3 (ADDW)Note 1	MOVW ADDWNote 1	MOVW XCHW ADDWNote 1							INCW DECW
sfrp	MOVW ADDWNote 1	MOVW (ADDW)Note 1	MOVW ADDWNote 1								PUSH POP
!addr16 !!addr24	MOVW	(MOVW)	MOVW						MOVTBLW		
mem [saddrp] [%saddrg]		MOVW									
PSW											PUSH POP
SP	ADDWG SUBWG										
post											PUSH POP PUSHU POPU
[TDE+]		(MOVW)						SACW			
byte											MACW MACSW

Notes 1. SUBW and CMPW are the same as ADDW.

- 2. There is no second operand, or the second operand is not an operand address.
- 3. When saddrp is saddrp2 with this combination, an instruction with a short code exists.
- 4. MULUW and DIVUX are the same as MULW.

(3) 24-bit instructions (The instructions enclosed in parentheses are implemented by a combination of operands, where WHL is described as rg.)

MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 13-3. Instructions Implemented by 24-Bit Addressing

2nd operand	#imm24	WHL	rg	saddrg	!!addr24	mem1	[%saddrg]	SP	NoneNote
1st operand			rg'						
WHL	(MOVG)	(MOVG)	(MOVG)	(MOVG)	(MOVG)	MOVG	MOVG	MOVG	
	(ADDG)	(ADDG)	(ADDG)	ADDG					
	(SUBG)	(SUBG)	(SUBG)	SUBG					
rg	MOVG	(MOVG)	MOVG	MOVG	MOVG				INCG
	ADDG	(ADDG)	ADDG						DECG
	SUBG	(SUBG)	SUBG						PUSH
									POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[%saddrg]		MOVG							
SP	MOVG	моуд							INCG
									DECG

Note There is no second operand, or the second operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 13-4. Bit Manipulation Instructions Implemented by Addressing

2nd operand	CY	saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit	/saddr.bit /sfr.bit /A.bit /X.bit /PSWL.bit /PSWH.bit	None Note
1st operand		mem2.bit !addr16.bit !!addr24.bit	/mem2.bit /!addr16.bit /!!addr24.bit	
СУ		MOV1 AND1 OR1 XOR1	AND1 OR1	NOT1 SET1 CLR1
saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit !!addr24.bit	MOV1			NOT1 SET1 CLR1 BF BT BTCLR BFSET

Note There is no second operand, or the second operand is not an operand address.

(5) Call/return instructions and branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 13-5. Call/Return and Branch Instructions Implemented by Addressing

Instruction address operand	\$addr20	\$!addr20	!addr16	!laddr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Basic instruction	BCNote BR	CALL BR	CALL BR RETCS RETCSB	CALL BR	CALL BR	CALL BR	CALL BR	CALL BR	CALLF	CALLF	BRKCS	BRK RET RETI RETB
Composite instruction	BF BT BTCLR BFSET DBNZ											

Note BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as BC.

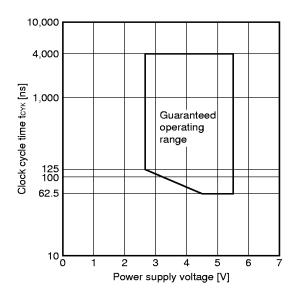
(6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

14. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (TA = 25 $^{\circ}$ C)

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{DD}		-0.5 to +7.0	V
	AVDD		AVss to VDD + 0.5	V
	AVss		-0.5 to +0.5	V
Input voltage	Vı		-0.5 to V _{DD} + 0.5	٧
Output voltage	Vo		-0.5 to V _{DD} + 0.5	V
Output low current	loL	At one pin	15	mA
		Total of all output pins	100	mA
Output high current	Іон	At one pin	-10	mA
		Total of all output pins	-100	mA
A/D converter reference input voltage	AV _{REF1}		-0.5 to V _{DD} + 0.3	V
D/A converter reference input	AV _{REF2}		-0.5 to V _{DD} + 0.3	V
voltage	AV _{REF3}		-0.5 to V _{DD} + 0.3	V
Operating ambient temperature	Та		-40 to +85	°C
Storage temperature	T _{stg}		-65 to +150	°C


Caution Absolute maximum ratings are rated values beyond which physical damage will be caused to the product; if the rated value of any of the parameters in the above table is exceeded, even momentarily, the quality of the product may deteriorate. Always use the product within its rated values.

OPERATING CONDITIONS

Operating ambient temperature (T_A) : -40 to +85 °C
 Rise time and fall time (t_r, t_f) (at pins which are not specified) : 0 to 200 μs
 Power supply voltage and clock cycle time : See Figure 14-1.

Figure 14-1. Power Supply Voltage and Clock Cycle Time

CAPACITANCE (TA = 25 °C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz			10	pF
Output capacitance	Co	0 V on pins other than measured pins			10	pF
I/O capacitance	Сю				10	pF

OSCILLATOR CHARACTERISTICS (TA = -40 to +85 $^{\circ}$ C, VDD = +4.5 to 5.5 V, Vss = 0 V)

Resonator	Recommended circuit	Parameter	MIN.	MAX.	Unit
Ceramic resonator or crystal	Vss1 X1 X2 C1 — C2	Oscillator frequency (fxx)	4	32	MHz
External clock		X1 input frequency (fx) X1 input rise and fall times	0	32 10	MHz
	X1 X2	(txr, txr)	0	10	ns
	HCMOS inverter	X1 input high-level and low- level widths (twxH, twxL)	10	125	ns

Caution When using the system clock generator, run wires in the portion surrounded by broken lines according to the following rules to avoid effects such as stray capacitance:

- Minimize the wiring.
- Never cause the wires to cross other signal lines.
- Never cause the wires to run near a line carrying a large varying current.
- Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss1. Never connect the capacitor to a ground pattern carrying a large current.
- Never extract a signal from the oscillator.

OSCILLATOR	CHARACTERISTICS	(T _A = -40 to ±85 °C	Vpp - +2 7 to 5 5 V	Vec - N V)
OSCILLATOR	CHARACTERISTICS	LIA = TO LO TOS C.	. VUU = TZ./ LO J.J V	. VSS = U V I

Resonator	Recommended circuit	Parameter	MIN.	MAX.	Unit
Ceramic resonator or crystal	Vss1 X1 X2 C1 — C2	Oscillator frequency (fxx)	4	16	MHz
External clock		X1 input frequency (fx)	4	16	MHz
	X1 X2	X1 input rise and fall times (txR, txF)	0	10	ns
	HCMOS inverter	X1 input high-level and low- level widths (twxH, twxL)	10	125	ns

Caution When using the system clock generator, run wires in the portion surrounded by broken lines according to the following rules to avoid effects such as stray capacitance:

- Minimize the wiring.
- Never cause the wires to cross other signal lines.
- Never cause the wires to run near a line carrying a large varying current.
- Cause the grounding point of the capacitor of the oscillator circuit to have the same potential as Vss1. Never connect the capacitor to a ground pattern carrying a large current.
- Never extract a signal from the oscillator.

DC CHARACTERISTICS (T_A = -40 to +85 °C, V_{DD} = AV_{DD} = +2.7 to 5.5 V, V_{SS} = AV_{SS} = 0 V) (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input low voltage	VIL1	For pins other than those described in Notes 1, 2, 3, and 4	-0.3		0.3V _{DD}	V
	V _{IL2}	For pins described in Notes 1, 2, 3, and 4	-0.3		0.2V _{DD}	V
	VIL3	V_{DD} = +5.0 V \pm 10 % For pins described in Notes 2, 3, and 4	-0.3		+0.8	V
Input high voltage	V _{IH1}	For pins other than those described in Note 1	0.7V _{DD}		V _{DD} + 0.3	V
	V _{IH2}	For pins described in Note 1	0.8V _{DD}		V _{DD} + 0.3	V
	Vінз	V_{DD} = +5.0 V ± 10 % For pins described in Notes 2, 3, and 4	2.2		V _{DD} + 0.3	V
Output low voltage	V _{OL1}	loL = 2 mA			0.4	V
	Vol2	V_{DD} = +5.0 V \pm 10 % I_{OL} = 8 mA For pins described in Notes 2 and 5			1.0	V
Output high voltage	Vон1	Іон = -2 mA	V _{DD} - 1.0			V
	Vон2	V_{DD} = +5.0 V \pm 10 % I_{OH} = -5 mA For pins described in Note 4	V _{DD} - 1.4			V
X1 input low current	lı.	$\begin{aligned} EXTC &= 0 \\ 0 \ V &\leq V_1 \leq V_{12} \end{aligned}$			-30	μΑ
X1 input high current	Іін	$\begin{aligned} &EXTC = 0 \\ &V_{IH2} \leq V_{I} \leq V_{DD} \end{aligned}$			+30	μΑ

Notes 1. X1, X2, RESET, P12/ASCK2/SCK2, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK/SCK1, P26/INTP5, P27/SI0, P32/SCK0/SCL, P33/SO0/SDA, TEST

- **2.** P40/AD0-P47/AD7, P50/A8-P57/A15
- **3.** P60/A16-P63/A19, P64/RD, P65/WR, P66/WAIT/HLDRQ, P67/REFRQ/HLDAK
- **4.** P00-P07
- **5.** P10-P17

DC CHARACTERISTICS (TA = -40 to +85 °C, VDD = AVDD = +2.7 to 5.5 V, Vss = AVss = 0 V) (2/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current	lu	$0 \text{ V} \leq V_I \leq V_{DD}$ For pins other that	an X1 when EXTC = 0			±10	μΑ
Output leakage current	ILO	$0 \text{ V} \leq V_0 \leq V_{DD}$				±10	μΑ
V _{DD} supply current	IDD1	Operation mode	fxx = 32 MHz V _{DD} = +5.0 V ± 10 %		25	45	mA
			fxx = 16 MHz VDD = +2.7 to 3.3 V		12	25	mA
	I _{DD2}	HALT mode	fxx = 32 MHz V _{DD} = +5.0 V ± 10 %		13	26	mA
			fxx = 16 MHz V _{DD} = +2.7 to 3.3 V		8	12	mA
	IDD3	IDLE mode (EXTC = 0)	fxx = 32 MHz V _{DD} = +5.0 V ± 10 %			12	mA
			fxx = 16 MHz V _{DD} = +2.7 to 3.3 V			8	mA
Pull-up resistor	R∟	V1 = 0 V		15		80	kΩ

AC CHARACTERISTICS (Ta = -40 to +85 $^{\circ}$ C, Vdd = AVdd = +2.7 to 5.5 V, Vss = AVss = 0 V)

(1) Read/write operation (1/2)

Parameter	Symbol	С	onditions	MIN.	MAX.	Unit
Address setup time	tsast	V _{DD} = +5.0 V ±	: 10 %	(0.5 + a) T - 15		ns
				(0.5 + a) T - 31		ns
ASTB high-level width	twsтн	V _{DD} = +5.0 V ±	: 10 %	(0.5 + a) T - 17		ns
				(0.5 + a) T - 40		ns
Address hold time (to ASTB↓)	thstla	V _{DD} = +5.0 V ±	: 10 %	0.5T - 24		ns
				0.5T - 34		ns
Address hold time (to RD↑)	thra			0.5T - 14		ns
Delay from address to RD↓	tdar	V _{DD} = +5.0 V ±	: 10 %	(1 + a) T - 9		ns
				(1 + a) T - 15		ns
Address float time (to RD↓)	tfra				0	ns
Delay from address to data input	tdaid	V _{DD} = +5.0 V ±	: 10 %		(2.5 + a + n) T - 37	ns
					(2.5 + a + n) T - 52	ns
Delay from ASTB↓ to data input	t DSTID	$V_{DD} = +5.0 \text{ V} \pm$: 10 %		(2 + n) T - 40	ns
					(2 + n) T - 60	ns
Delay from RD↓ to data input	torio	$V_{DD} = +5.0 \text{ V} \pm$: 10 %		(1.5 + n) T - 50	ns
					(1.5 + n) T - 70	ns
Delay from ASTB↓ to RD↓	t DSTR			0.5T - 9		ns
Data hold time (to RD↑)	tHRID			0		ns
Delay from RD↑ to address active	tdra	After program	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	0.5T - 8		ns
		is read		0.5T - 12		ns
		After data is	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	1.5T - 8		ns
		read		1.5T - 12		ns
Delay from RD↑ to ASTB↑	t DRST			0.5T - 17		ns
RD low-level width	twaL	$V_{DD} = +5.0 \text{ V} \pm$: 10 %	(1.5 + n) T - 30		ns
				(1.5 + n) T - 40		ns
Address hold time (to WR↑)	thwa			0.5T - 14		ns
Delay from address to WR↓	toaw	V _{DD} = +5.0 V ±	: 10 %	(1 + a) T - 5		ns
				(1 + a) T - 15		ns
Delay from ASTB↓ to data output	tрэтор	$V_{DD} = +5.0 \text{ V} \pm$: 10 %		0.5T + 19	ns
					0.5T + 35	ns
Delay from WR↓ to data output	towoo				0.5T - 11	ns
Delay from ASTB↓ to WR↓	tostw			0.5T - 9		ns

Remarks T: TCYK (system clock cycle time)

a: 1 (during address wait), otherwise, 0

n: Number of wait states $(n \ge 0)$

(1) Read/write operation (2/2)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (to WR↑)	tsopw	V _{DD} = +5.0 V ± 10 %	(1.5 + n) T - 30		ns
			(1.5 + n) T - 40		ns
Data hold time (to WR↑)Note	thwod	V _{DD} = +5.0 V ± 10 %	0.5T - 5		ns
			0.5T - 25		ns
Delay from WR↑ to ASTB↑	towst		0.5T - 12		ns
WR low-level width	twwL	V _{DD} = +5.0 V ± 10 %	(1.5 + n) T - 30		ns
			(1.5 + n) T - 40		ns

Note The hold time includes the time during which V_{OH1} and V_{OL1} are held under the load conditions of $C_L = 50$ pF and $R_L = 4.7$ k Ω .

Remarks T: TCYK (system clock cycle time)

n: Number of wait states $(n \ge 0)$

(2) Bus hold timing

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Delay from HLDRQ↑ to float	t _{FHQC}			(6 + a + n) T + 50	ns
Delay from HLDRQ↑ to HLDAK↑	tdhqhhah	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		(7 + a + n) T + 30	ns
				(7 + a + n) T + 40	ns
Delay from float to HLDAK↑	t DCFHA			1T + 30	ns
Delay from HLDRQ↓ to HLDAK↓	t DHQLHAL	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		2T + 40	ns
				2T + 60	ns
Delay from HLDAK↓ to active	tDHAC	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	1T - 20		ns
			1T - 30		ns

Remarks T: Toyk (system clock cycle time)

a: 1 (during address wait), otherwise, 0

n: Number of wait states $(n \ge 0)$

(3) External wait timing

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Delay from address to WAIT↓ input	tdawt	V _{DD} = +5.0 V ± 10 %		(2 + a) T - 40	ns
				(2 + a) T - 60	ns
Delay from ASTB↓ to WAIT↓ input	tostwt	V _{DD} = +5.0 V ± 10 %		1.5T - 40	ns
				1.5T - 60	ns
Hold time from ASTB↓ to WAIT	tнѕтwтн	V _{DD} = +5.0 V ± 10 %	(0.5 + n) T + 5		ns
			(0.5 + n) T +10		ns
Delay from ASTB↓ to WAIT↑	tostwth	V _{DD} = +5.0 V ± 10 %		(1.5 + n) T - 40	ns
				(1.5 + n) T - 60	ns
Delay from RD↓ to WAIT↓ input	torwil	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		T - 50	ns
				T - 70	ns
Hold time from RD↓ to WAIT↓	thrwt	V _{DD} = +5.0 V ± 10 %	nT + 5		ns
			nT + 10		ns
Delay from RD↓ to WAIT↑	torwth	V _{DD} = +5.0 V ± 10 %		(1 + n) T - 40	ns
				(1 + n) T - 60	ns
Delay from WAIT↑ to data input	towrid	V _{DD} = +5.0 V ± 10 %		0.5T - 5	ns
				0.5T - 10	ns
Delay from WAIT↑ to WR↑	towtw		0.5T		ns
Delay from WAIT↑ to RD↑	towtr		0.5T		ns
Delay from WR↓ to WAIT↓ input	towwtl	V _{DD} = +5.0 V ± 10 %		T - 50	ns
				T - 75	ns
Hold time from WR↓ to WAIT	tнwwт	V _{DD} = +5.0 V ± 10 %	nT + 5		ns
			nT + 10		ns
Delay from WR↓ to WAIT↑	tоwwтн	VDD = +5.0 V ± 10 %		(1 + n) T - 40	ns
				(1 + n) T - 70	ns

Remarks T: TCYK (system clock cycle time)

a: 1 (during address wait), otherwise, 0

n: Number of wait states $(n \ge 0)$

(4) Refresh timing

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Random read/write cycle time	trc		ЗТ		ns
REFRQ low-level pulse width	twrfqL	V _{DD} = +5.0 V ± 10 %	1.5T - 25		ns
			1.5T - 30		ns
Delay from ASTB↓ to REFRQ	†DSTRFQ		0.5T - 9		ns
Delay from RD↑ to REFRQ	torreq		1.5T - 9		ns
Delay from WR↑ to REFRQ	towrfq		1.5T - 9		ns
Delay from REFRQ↑ to ASTB	†DRFQST		0.5T - 15		ns
REFRQ high-level pulse width	twrfqh	V _{DD} = +5.0 V ± 10 %	1.5T - 25		ns
			1.5T - 30		ns

Remark T: Tcyk (system clock cycle time)

SERIAL OPERATION (Ta = -40 to +85 $^{\circ}$ C, VDD = +2.7 to 5.5 V, AVss = Vss = 0 V)

(1) CSI

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Serial clock cycle time (SCK0)	tcysko	Input	External clock When SCK0 and SO0 are CMOS I/O	10/fxx + 380		ns
		Outpu	t	Т		μs
Serial clock low-level width (SCK0)	twskLo	Input	External clock When SCK0 and SO0 are CMOS I/O	5/fxx + 150		ns
		Outpu	t	0.5T - 40		μs
Serial clock high-level width (SCK0)	twsкно	Input	External clock When SCK0 and SO0 are CMOS I/O	5/fxx + 150		ns
		Outpu	t	0.5T - 40		μs
SI0 setup time (to SCK0↑)	tsssko			40		ns
SI0 hold time (to SCK0↑)	tнssко			5/fxx + 40		ns
SO0 output delay time (to SCK0↓)	tosaskı		S push-pull output e serial I/O mode)	0	5/fxx + 150	ns
	tosask2		drain output e serial I/O mode), $R_L=1~k\Omega$	0	5/fxx + 400	ns

Remarks 1. The values in this table are those when C_L is 100 pF.

2. T : Serial clock cycle set by software. The minimum value is 16/fxx.

3. fxx: Oscillator frequency

(2) IOE1, IOE2

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Serial clock cycle time	tcysk1	Input	V _{DD} = +5.0 V ± 10 %	250		ns
(SCK1, SCK2)				500		ns
		Output	Internal, divided by 16	Т		ns
Serial clock low-level width	twsĸL1	Input	V _{DD} = +5.0 V ± 10 %	85		ns
(SCK1, SCK2)				210		ns
		Output	Internal, divided by 16	0.5T - 40		ns
Serial clock high-level width	twsкн1	Input	V _{DD} = +5.0 V ± 10 %	85		ns
(SCK1, SCK2)				210		ns
		Output	Internal, divided by 16	0.5T - 40		ns
Setup time for SI1 and SI2 (to SCK1, SCK2↑)	tsssk1			40		ns
Hold time for SI1 and SI2 (to SCK1, SCK2↑)	thssk1			40		ns
Output delay time for SO1 and SO2 (to SCK1, SCK2↓)	tososk			0	50	ns
Output hold time for SO1 and SO2 (to SCK1, SCK2↑)	tнsosк	When da	ata is transferred	0.5tсүзк1 - 40		ns

Remarks 1. The values in this table are those when C_L is 100 pF.

2. T: Serial clock cycle set by software. The minimum value is 16/fxx.

(3) UART, UART2

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASCK clock input cycle time	tcyask	V _{DD} = +5.0 V ± 10 %	125		ns
			250		ns
ASCK clock low-level width	twaskl	V _{DD} = +5.0 V ± 10 %	52.5		ns
			85		ns
ASCK clock high-level width	twaskh	V _{DD} = +5.0 V ± 10 %	52.5		ns
			85		ns

CLOCK OUTPUT OPERATION

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
CLKOUT cycle time	tcycL		nT		ns
CLKOUT low-level width	toll	V _{DD} = +5.0 V ± 10 %	0.5tcycL - 10		ns
			0.5tcycL - 20		ns
CLKOUT high-level width	t CLH	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	0.5tcycL - 10		ns
			0.5tcycL - 20		ns
CLKOUT rise time	tolr	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		10	ns
				20	ns
CLKOUT fall time	tolf	V _{DD} = +5.0 V ± 10 %		10	ns
				20	ns

Remarks n: Divided frequency ratio set by software in the CPU (n = 1, 2, 4, 8, 16)

T: TCYK (system clock cycle time)

OTHER OPERATIONS

	Parameter	Symbol	Conditions	MIN.	MAX.	Unit
	NMI low-level width	twniL		10		μs
	NMI high-level width	twnih		10		μs
*	INTP0 low-level width	twitol		4tcysmp		ns
*	INTP0 high-level width	twiтон		4tcysmp		ns
*	Low-level width for INTP1- INTP3 and CI	twiT1L		4tсүсри		ns
*	High-level width for INTP1-INTP3 and CI	twiT1H		4tсүсри		ns
	Low-level width for INTP4 and INTP5	twiT2L		10		μs
	High-level width for INTP4 and INTP5	twiT2H		10		μs
	RESET low-level width	twrsL		10		μs
	RESET high-level width	twrsh		10		μs

Remarks tcysmp: Sampling clock set by software

tcycpu: CPU operation clock set by software in the CPU

A/D CONVERTER CHARACTERISTICS (TA = -40 to +85 $^{\circ}$ C, VDD = AVDD = AVREF1 = +2.7 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8			bit
Total errorNote					1.0	%
Linearity calibrationNote					0.8	%
Quantization error					±1/2	LSB
Conversion time	tconv	FR = 1	120			tcyk
		FR = 0	180			tcyk
Sampling time	tsamp	FR = 1	24			tcyk
		FR = 0	36			tcyk
Analog input voltage	VIAN		-0.3		AVREF1 + 0.3	٧
Analog input impedance	Ran			1,000		МΩ
AVREF1 current	Alref1			0.5	1.5	mA
AV _{DD} supply current	Aldd1	fxx = 32 MHz, CS = 1		2.0	5.0	mA
	Aldd2	STOP mode, CS = 0		1.0	20	μΑ

Note Quantization error is not included. This parameter is indicated as the ratio to the full-scale value.

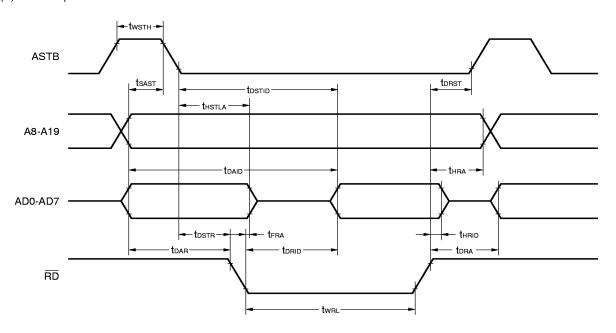
Remark toyk: System clock cycle time

D/A CONVERTER CHARACTERISTICS (TA = -40 to +85 $^{\circ}$ C, V_{DD} = AV_{DD} = +2.7 to 5.5 V, Vss = AV_{SS} = 0 V)

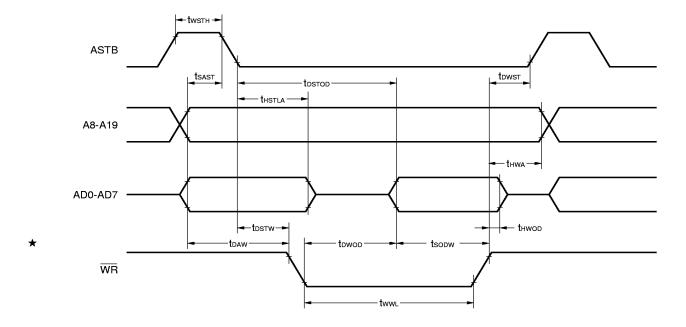
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution				8			bit
Total error		Load conditions: 4 MΩ, 30 pF	V _{DD} = AV _{DD} = AV _{REF2} = +2.7 to 5.5 V AV _{REF3} = 0 V			0.6	%
			V _{DD} = AV _{DD} = +2.7 to 5.5 V AV _{REF2} = 0.75V _{DD} AV _{REF3} = 0.25V _{DD}			0.8	%
		Load conditions: 2 MΩ, 30 pF	V _{DD} = AV _{DD} = AV _{REF2} = +2.7 to 5.5 V AV _{REF3} = 0 V			0.8	%
			V _{DD} = AV _{DD} = +2.7 to 5.5 V AV _{REF2} = 0.75V _{DD} AV _{REF3} = 0.25V _{DD}			1.0	%
Settling time		Load conditions:	2 MΩ, 30 pF			10	μs
Output resistance	Ro	DACS0, 1 = 55 H	I		10		kΩ
Analog reference voltage	AV _{REF2}			0.75V _{DD}		V _{DD}	V
	AV _{REF3}			0		0.25V _{DD}	V
Resistance of AVREF2 and AVREF3	Rairef	DACS0, 1 = 55 H	I	4	8		kΩ
Reference power supply	Alref2			0		5	mA
input current	Alref3			-5		0	mA

DATA RETENTION CHARACTERISTICS (TA = -40 to +85 $^{\circ}$ C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	STOP mode	2.5		5.5	٧
Data retention current	IDDDR	V _{DDDR} = +2.7 to 5.5 V		10	50	μΑ
		V _{DDDR} = +2.5 V		2	10	μΑ
V _{DD} rise time	trvo		200			μs
VDD fall time	trvo		200			μs
V _{DD} hold time (to STOP mode setting)	tнvo		0			ms
STOP clear signal input time	torel		0			ms
Oscillation settling time	twait	Crystal	30			ms
		Ceramic resonator	5			ms
Input low voltage	VIL	Specific pinsNote	0		0.1VDDDR	٧
Input high voltage	ViH		0.9VDDDR		VDDDR	٧

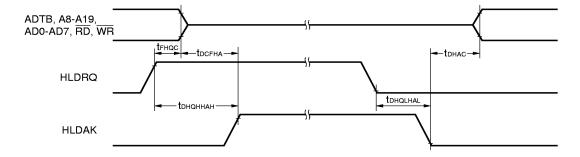

Note RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK/SCK1, P26/INTP5, P27/SI0, P32/SCK0/SCL, and P33/SO0/SDA pins

AC TIMING TEST POINTS

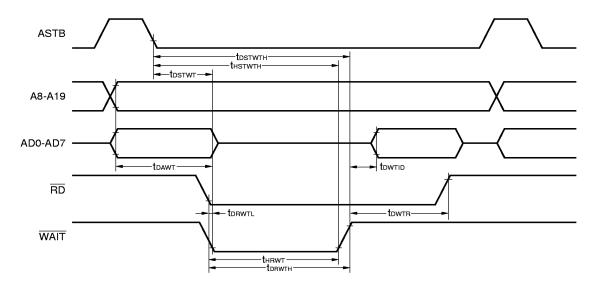


TIMING WAVEFORM

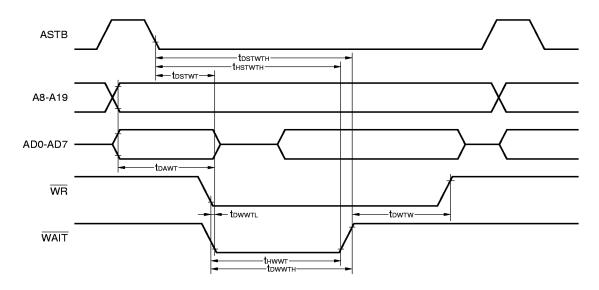
(1) Read operation



(2) Write operation

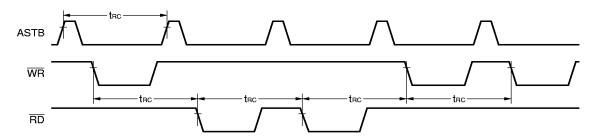

78

HOLD TIMING

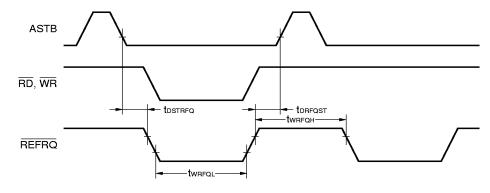


EXTERNAL WAIT SIGNAL INPUT TIMING

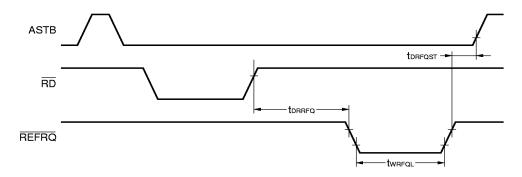
(1) Read operation

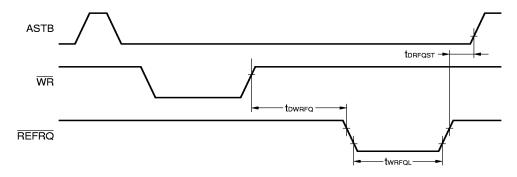


(2) Write operation

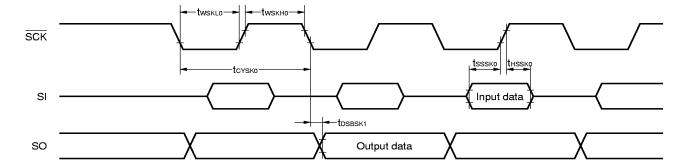


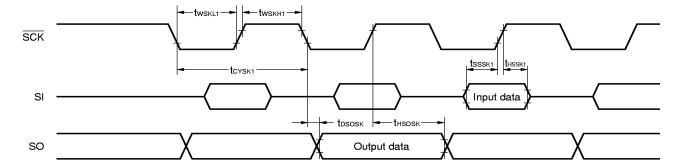
REFRESH TIMING WAVEFORM


(1) Random read/write cycle

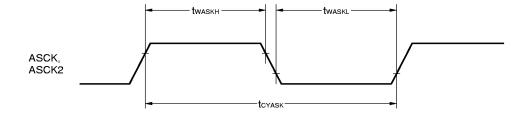

(2) When refresh memory is accessed for a read and write at the same time

(3) Refresh after a read

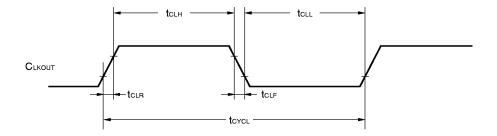

(4) Refresh after a write


80

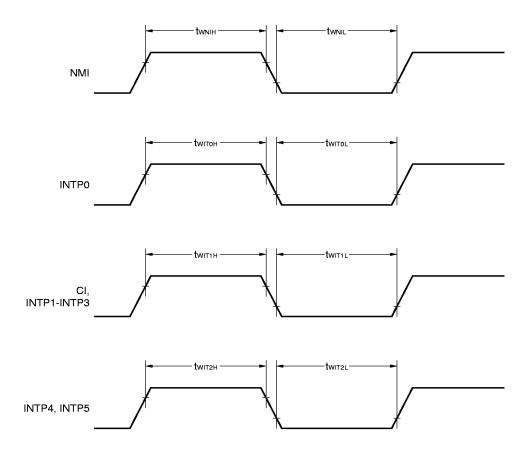
SERIAL OPERATION

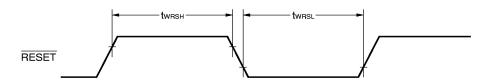

★ (1) CSI

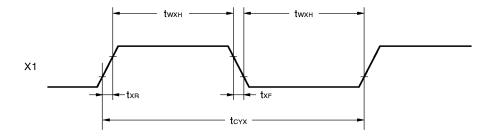
(2) IOE1, IOE2

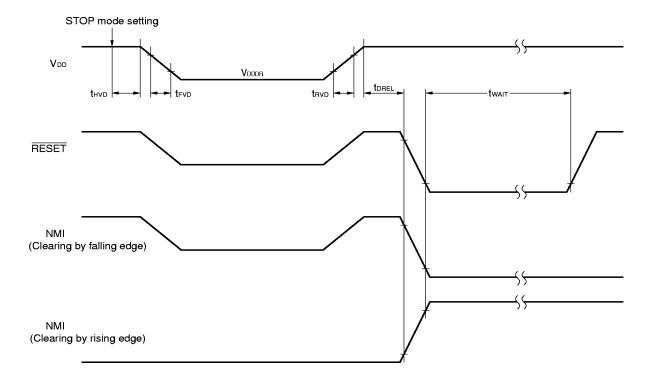


(3) UART, UART2

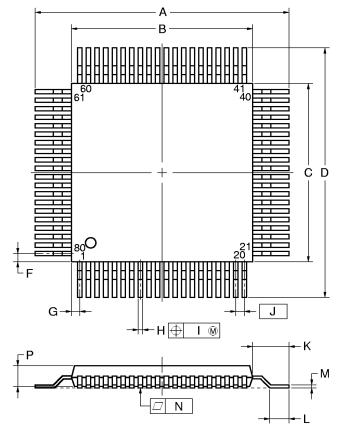



CLOCK OUTPUT TIMING

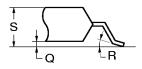

INTERRUPT INPUT TIMING


RESET INPUT TIMING

EXTERNAL CLOCK TIMING



DATA RETENTION CHARACTERISTICS

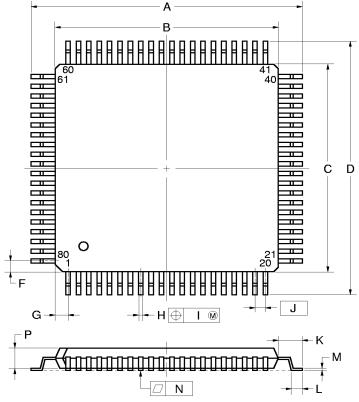


15. PACKAGE DRAWINGS

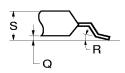
80 PIN PLASTIC QFP (14x14)

detail of lead end

NOTE


Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.4	0.677±0.016
F	0.825	0.032
G	0.825	0.032
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
T	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	0.15 ^{+0.10} -0.05	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7±0.1	$0.106^{+0.005}_{-0.004}$
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

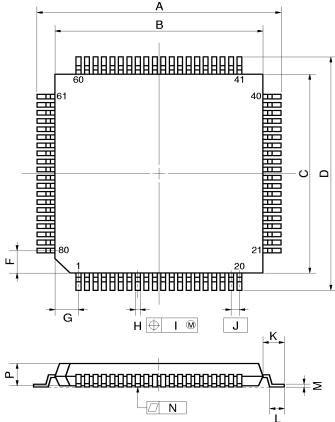

S80GC-65-3B9-5

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced product.

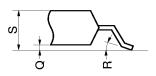
80 PIN PLASTIC QFP (14×14)

detail of lead end

NOTE


Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.20±0.20	0.677±0.008
В	14.00±0.20	$0.551^{+0.009}_{-0.008}$
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$
D	17.20±0.20	0.677±0.008
F	0.825	0.032
G	0.825	0.032
Н	0.32±0.06	$0.013^{+0.002}_{-0.003}$
1	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.60±0.20	0.063±0.008
L	0.80±0.20	$0.031^{+0.009}_{-0.008}$
М	0.17 +0.03 -0.07	$0.007^{+0.001}_{-0.003}$
N	0.10	0.004
Р	1.40±0.10	0.055±0.004
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3°+7°
S	1.70 MAX.	0.067 MAX.


P80GC-65-8BT

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced product.

80 PIN PLASTIC TQFP (FINE PITCH) (\Box 12)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	14.0±0.2	$0.551^{+0.009}_{-0.008}$
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.0±0.2	0.551 ^{+0.009} _{-0.008}
F	1.25	0.049
G	1.25	0.049
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	$0.020^{+0.008}_{-0.009}$
М	0.145 ^{+0.055} -0.045	0.006±0.002
N	0.10	0.004
Р	1.05	0.041
Q	0.05±0.05	0.002±0.002
R	5°±5°	5°±5°
S	1.27 MAX.	0.050 MAX.

P80GK-50-BE9-4

Remark The shape and material of the ES version are the same as those of the corresponding mass-produced product.

★ 16. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD784035, μ PD784036, μ PD784037, or μ PD784038.

For details of the recommended soldering conditions, refer to our document **Semiconductor Device Mounting Technology Manual** (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 16-1. Soldering Conditions for Surface-Mount Devices (1/2)

```
(1) \muPD784035GC-xxx-3B9: 80-pin plastic QFP (14 × 14 × 2.7 mm) \muPD784036GC-xxx-3B9: 80-pin plastic QFP (14 × 14 × 2.7 mm) \muPD784037GC-xxx-3B9: 80-pin plastic QFP (14 × 14 × 2.7 mm) \muPD784038GC-xxx-3B9: 80-pin plastic QFP (14 × 14 × 2.7 mm)
```

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 235 °C Reflow time: 30 seconds or less (210 °C or more) Maximum allowable number of reflow processes: 3	IR35-00-3
VPS	Peak package's surface temperature: 215 °C Reflow time: 40 seconds or less (200 °C or more) Maximum allowable number of reflow processes: 3	VP15-00-3
Wave soldering	Solder temperature: 260 °C or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature : 120 °C max. (measured on the package surface)	WS60-00-1
Partial heating method	Terminal temperature: 300 °C or less Heat time: 3 seconds or less (for one side of a device)	-

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

```
(2) \muPD784035GC-xxx-8BT: 80-pin plastic QFP (14 × 14 × 1.4 mm) \muPD784036GC-xxx-8BT: 80-pin plastic QFP (14 × 14 × 1.4 mm) \muPD784037GC-xxx-8BT: 80-pin plastic QFP (14 × 14 × 1.4 mm) \muPD784038GC-xxx-8BT: 80-pin plastic QFP (14 × 14 × 1.4 mm)
```

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 235 °C Reflow time: 30 seconds or less (210 °C or more) Maximum allowable number of reflow processes: 2	IR35-00-2
VPS	Peak package's surface temperature: 215 °C Reflow time: 40 seconds or less (200 °C or more) Maximum allowable number of reflow processes: 2	VP15-00-2
Wave soldering	Solder temperature: 260 °C or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature : 120 °C max. (measured on the package surface)	WS60-00-1
Partial heating method	Terminal temperature: 300 °C or less Heat time: 3 seconds or less (for one side of a device)	-

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

Table 16-1. Soldering Conditions for Surface-Mount Devices (2/2)

(3) μ PD784035GK- $\times\times$ -BE9: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) μ PD784036GK- $\times\times$ -BE9: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) μ PD784037GK- $\times\times$ -BE9: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm) μ PD784038GK- $\times\times$ -BE9: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 235 °C Reflow time: 30 seconds or less (210 °C or more) Maximum allowable number of reflow processes: 2 Exposure limit: 7 daysNote (10 hours of pre-baking is required at 125 °C afterward) <caution> Non-heat-resistant trays, such as magazine and taping trays, cannot be baked before unpacking.</caution>	IR35-107-2
VPS	Peak package's surface temperature: 215 °C Reflow time: 40 seconds or less (200 °C or more) Maximum allowable number of reflow processes: 2 Exposure limit: 7 daysNote (10 hours of pre-baking is required at 125 °C afterward) <caution> Non-heat-resistant trays, such as magazine and taping trays, cannot be baked before unpacking.</caution>	VP15-107-2
Partial heating method	Terminal temperature: 300 °C or less Heat time: 3 seconds or less (for one side of a device)	-

Note Maximum number of days during which the product can be stored at a temperature of 25 °C and a relative humidity of 65 % or less after dry-pack package is opened.

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

★ APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD784038. See also **(5)**.

(1) Language processing software

RA78K4	Assembler package for all 78K/IV series models
CC78K4	C compiler package for all 78K/IV series models
DF784038	Device file for μ PD784038 sub-series models
CC78K4-L	C compiler library source file for all 78K/IV series models

(2) PROM write tools

PG-1500	PROM programmer
PA-78P4026GC PA-78P4038GK PA-78P4026KK	Programmer adaptor, connects to PG-1500
PG-1500 controller	Control program for PG-1500

(3) Debugging tools

• When using the in-circuit emulator IE-78K4-NS

IE-78K4-NS	In-circuit emulator for all 78K/IV series models
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-C	Interface adapter when the PC-9800 series computer (other than a notebook) is used as the host machine
IE-70000-CD-IF	PC card and interface cable when a PC-9800 series notebook is used as the host machine
IE-70000-PC-IF-C	Interface adapter when the IBM PC/AT TM or compatible is used as the host machine
IE-784038-NS-EM1Note	Emulation board for evaluating μ PD784038 sub-series models
NP-80GC	Emulation probe for 80-pin plastic QFP (GC-3B9 type)
NP-80GKNote	Emulation probe for 80-pin plastic TQFP (GK-BE9 type)
EV-9200GC-80	Socket for mounting on target system board made for 80-pin plastic QFP (GC-3B9 type)
TGK-080SDW	Adapter for mounting on target system board made for 80-pin plastic TQFP (fine pitch) (GK-BE9 type)
EV-9900	Tool used to remove the μ PD78P4038KK-T from the EV-9200GC-80
ID78K4-NSNote	Integrated debugger for IE-78K4-NS
SM78K4-NS	System simulator for all 78K/IV series models
DF784038	Device file for μPD784038 sub-series models

Note Under development

• When using the in-circuit emulator IE-784000-R

In-circuit emulator for all 78K/IV series models
Interface adapter when the PC-9800 series computer (other than a notebook) is used as the host machine
Interface adapter and cable when a PC-9800 series notebook is used as the host machine
Interface adapter when the IBM PC/AT or compatible is used as the host machine
Interface adapter and cable when the EWS is used as the host machine
Emulation board for evaluating μ PD784038 sub-series models
Emulation board for all 78K/IV series models
Conversion board for 80 pins to use the IE-784038-NS-EM1 on the IE-784000-R. The board is not needed when the conventional product IE-784038-R-EM1 is used.
Emulation probe for 80-pin plastic QFP (GC-3B9 type)
Emulation probe for 80-pin plastic TQFP (fine pitch) (GK-BE9 type) for all μ PD784038 sub-series
Socket for mounting on target system board made for 80-pin plastic QFP (GC-3B9 type)
Adapter for mounting on target system board made for 80-pin plastic TQFP (fine pitch) (GK-BE9 type)
Tool used to remove the μ PD78P4038KK-T from the EV-9200GC-80
Integrated debugger for IE-784000-R
System simulator for all 78K/IV series models
Device file for μPD784038 sub-series models

Note Under development

(4) Real-time OS

RX78K/IV	Real-time OS for 78K/IV series models
MX78K4	OS for 78K/IV series models

(5) Notes when using development tools

- The ID78K-NS, ID78K4, and SM78K4 can be used in combination with the DF784038.
- The CC78K and RX78K/IV can be used in combination with the RA78K4 and DF784038.
- The NP-80GC is a product from Naito Densei Machida Mfg. Co., Ltd. (044-822-3813). Consult the NEC sales representative for purchasing.
- The TGK-080SDW is a product from TOKYO ELETECH CORPORATION.

Refer to: Daimaru Kogyo, Ltd.

Tokyo Electronic Components Division (03-3820-7112) Osaka Electronic Components Division (06-244-6672)

· The host machines and operating systems corresponding to each software are shown below.

Host machine	PC	EWS
[os]	PC-9800 Series [Windows TM]	HP9000 Series 700 TM [HP-UX TM]
	IBM PC/AT and compatibles [Windows]	SPARCstation TM [SunOS TM]
		NEWS™ (RISC) [NEWS-OS™]
Software		
RA78K4	○Note	0
CC78K4	○Note	0
PG-1500 controller	○Note	-
ID78K4-NS	0	-
ID78K4	0	0
SM78K4	0	-
RX78K/IV	○Note	0
MX78K4	○Note	0

Note Software under MS-DOS

* APPENDIX B RELATED DOCUMENTS

Documents Related to Devices

Description of the second	Document No.	
Document name	Japanese	English
μPD784031 Data Sheet	U11507J	U11507E
μPD7840335, 784036, 784037, 784038	U10847J	This manual
μPD78P4038 Data Sheet	U10848J	U10848E
μPD784038, 784038Y Sub-Series User's Manual, Hardware	U11316J	U11316E
μ PD784038 Sub-Series Special Function Registers	U11090J	-
78K/IV Series User's Manual, Instruction	U10905J	U10905E
78K/IV Series Instruction Summary Sheet	U10594J	-
78K/IV Series Instruction Set	U10595J	-
78K/IV Series Application Note, Software Basic	U10095J	-

Documents Related to Development Tools (User's Manual)

Document name		Document No.	
		Japanese	English
RA78K4 Assembler Package	Operation	U11334J	U11334E
	Language	U11162J	U11162E
RA78K Series Structured Assembler Preprocessor		U11743J	U11743E
CC78K4 C Compiler	Operation	U11572J	U11572E
	Language	U11571J	U11571E
CC78K Series Library Source File		U12322J	U12322E
PG-1500 PROM Programmer		U11940J	U11940E
PG-1500 Controller PC-9800 Series (MS-DOS TM) Base		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS TM) Base		EEU-5008	U10540E
IE-78K4-NS		Under creation	To be created
IE-784000-R		U12903J	EEU-1534
IE-784038-NS-EM1		To be created	To be created
IE-784038-R-EM1		U11383J	U11383E
EP-78230		EEU-985	EEU-1515
EP-78054GK-R		EEU-932	EEU-1468
SM78K4 System Simulator Windows Base	Reference	U10093J	U10093E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E
ID78K4 Integrated Debugger	Reference	U12796J	U12796E
ID78K4 Integrated Debugger Windows Base Reference		U10440J	U10440E
ID78K4 Integrated Debugger HP-UX, SunOS, NEW-OS Base Reference		U11960J	U11960E

Caution The above documents may be revised without notice. Use the latest versions when you design application systems.

Documents Related to Software to Be Incorporated into the Product (User's Manual)

Document name		Document No.	
		Japanese	English
78K/IV Series Real-Time OS	Basic	U10603J	U10603E
	Installation	U10604J	U10604E
	Debugger	U10364J	-
OS for 78K/IV Series MX78K4	Basic	U11779J	-

Other Documents

Document name	Document No.	
Document name	Japanese	English
IC PACKAGE MANUAL	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	U11892J	E11892E
Semiconductor Device Quality Control/Reliability Handbook	C12769J	-
Guide for Products Related to Microcomputer: Other Companies	C11416J	-

Caution The above documents may be revised without notice. Use the latest versions when you design application systems.